MADDPG pytorch
时间: 2023-11-15 16:59:18 浏览: 472
MADDPG pytorch是一个基于PyTorch框架实现的多智能体强化学习算法。它是一种深度强化学习算法,可以用于解决多智能体协作问题。MADDPG pytorch的实现可以在GitHub上找到,同时也提供了环境配置过程和使用方法。在使用MADDPG pytorch之前,需要先激活Python3.6环境,并将MPE环境下载并解压到虚拟环境中。然后,将MPE环境中的multiagent文件夹拷贝到MADDPG工程目录下,并在PyCharm中将common文件夹Mark Directory as Source Root,以便MADDPG工程能够较好地调用multiagent中创建的环境。最后,运行main即可开始使用MADDPG pytorch进行多智能体协作问题的解决。
相关问题
maddpg pytorch
你的问题是关于 MADDPG 在 PyTorch 中的实现吗?如果是的话,我可以提供一些信息。MADDPG 是多智能体强化学习算法(Multi-Agent Deep Deterministic Policy Gradient),它是 DDPG(Deep Deterministic Policy Gradient)算法的一个扩展。在 PyTorch 中实现 MADDPG 算法时,可以参考一些开源代码,例如 OpenAI 的 MADDPG 实现(https://github.com/openai/maddpg)或者 Udacity 的 DRLND 课程中的 MADDPG 项目(https://github.com/udacity/deep-reinforcement-learning/tree/master/multi-agent)。这些代码提供了 PyTorch 中实现 MADDPG 算法的参考,你可以根据需要进行修改和调整。
MADDPG的pytorch代码案例
以下是一个简单的MADDPG的PyTorch代码案例,其中包括两个智能体,每个智能体都有自己的Actor和Critic网络。这里的环境是一个简单的连续动作空间,如CartPole。
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import numpy as np
import random
from collections import deque
# 定义Actor网络
class Actor(nn.Module):
def __init__(self, state_dim, action_dim, max_action):
super(Actor, self).__init__()
self.fc1 = nn.Linear(state_dim, 256)
self.fc2 = nn.Linear(256, 256)
self.fc3 = nn.Linear(256, action_dim)
self.max_action = max_action
def forward(self, x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.max_action * torch.tanh(self.fc3(x))
return x
# 定义Critic网络
class Critic(nn.Module):
def __init__(self, state_dim, action_dim):
super(Critic, self).__init__()
self.fc1 = nn.Linear(state_dim + action_dim, 256)
self.fc2 = nn.Linear(256, 256)
self.fc3 = nn.Linear(256, 1)
def forward(self, x, u):
x = F.relu(self.fc1(torch.cat([x, u], 1)))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
# 定义MADDPG智能体
class MADDPG:
def __init__(self, state_dim, action_dim, max_action, discount=0.99, tau=0.01):
self.state_dim = state_dim
self.action_dim = action_dim
self.max_action = max_action
self.discount = discount
self.tau = tau
# 创建Actor和Critic网络
self.actor1 = Actor(state_dim, action_dim, max_action)
self.actor2 = Actor(state_dim, action_dim, max_action)
self.critic1 = Critic(state_dim, action_dim)
self.critic2 = Critic(state_dim, action_dim)
# 创建Actor和Critic目标网络
self.actor1_target = Actor(state_dim, action_dim, max_action)
self.actor2_target = Actor(state_dim, action_dim, max_action)
self.critic1_target = Critic(state_dim, action_dim)
self.critic2_target = Critic(state_dim, action_dim)
# 复制初始参数到目标网络
self.actor1_target.load_state_dict(self.actor1.state_dict())
self.actor2_target.load_state_dict(self.actor2.state_dict())
self.critic1_target.load_state_dict(self.critic1.state_dict())
self.critic2_target.load_state_dict(self.critic2.state_dict())
# 创建优化器
self.actor1_optimizer = optim.Adam(self.actor1.parameters(), lr=1e-3)
self.actor2_optimizer = optim.Adam(self.actor2.parameters(), lr=1e-3)
self.critic1_optimizer = optim.Adam(self.critic1.parameters(), lr=1e-3)
self.critic2_optimizer = optim.Adam(self.critic2.parameters(), lr=1e-3)
# 选择动作
def select_action(self, state):
state = torch.FloatTensor(state.reshape(1, -1))
action1 = self.actor1(state).cpu().data.numpy().flatten()
action2 = self.actor2(state).cpu().data.numpy().flatten()
return np.concatenate((action1, action2))
# 更新网络
def update(self, buffer, batch_size):
# 从缓冲区随机采样一批数据
state, action, next_state, reward, done = buffer.sample(batch_size)
state = torch.FloatTensor(state)
action = torch.FloatTensor(action)
next_state = torch.FloatTensor(next_state)
reward = torch.FloatTensor(reward.reshape((batch_size, 1)))
done = torch.FloatTensor(done.reshape((batch_size, 1)))
# 计算当前状态的Q值
current_Q1 = self.critic1(state, action)
current_Q2 = self.critic2(state, action)
# 计算下一个状态的Q值
next_action1 = self.actor1_target(next_state)
next_action2 = self.actor2_target(next_state)
noise = torch.FloatTensor(np.random.normal(0, 0.1, size=(batch_size, self.action_dim)))
next_action1 = (next_action1 + noise).clamp(-self.max_action, self.max_action)
next_action2 = (next_action2 + noise).clamp(-self.max_action, self.max_action)
next_Q1 = self.critic1_target(next_state, next_action1)
next_Q2 = self.critic2_target(next_state, next_action2)
next_Q = torch.min(next_Q1, next_Q2)
# 计算目标Q值
target_Q = reward + (1 - done) * self.discount * next_Q
# 更新Critic网络
self.critic1_optimizer.zero_grad()
loss1 = F.mse_loss(current_Q1, target_Q.detach())
loss1.backward()
self.critic1_optimizer.step()
self.critic2_optimizer.zero_grad()
loss2 = F.mse_loss(current_Q2, target_Q.detach())
loss2.backward()
self.critic2_optimizer.step()
# 更新Actor网络
self.actor1_optimizer.zero_grad()
actor1_loss = -self.critic1(state, self.actor1(state)).mean()
actor1_loss.backward()
self.actor1_optimizer.step()
self.actor2_optimizer.zero_grad()
actor2_loss = -self.critic2(state, self.actor2(state)).mean()
actor2_loss.backward()
self.actor2_optimizer.step()
# 更新目标网络
for param, target_param in zip(self.actor1.parameters(), self.actor1_target.parameters()):
target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data)
for param, target_param in zip(self.actor2.parameters(), self.actor2_target.parameters()):
target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data)
for param, target_param in zip(self.critic1.parameters(), self.critic1_target.parameters()):
target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data)
for param, target_param in zip(self.critic2.parameters(), self.critic2_target.parameters()):
target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data)
# 定义经验回放缓冲区
class ReplayBuffer:
def __init__(self, capacity):
self.buffer = deque(maxlen=capacity)
# 添加样本
def add(self, state, action, next_state, reward, done):
self.buffer.append((state, action, next_state, reward, done))
# 随机采样批数据
def sample(self, batch_size):
state, action, next_state, reward, done = zip(*random.sample(self.buffer, batch_size))
return np.array(state), np.array(action), np.array(next_state), np.array(reward), np.array(done)
# 训练
def train(env, agent, buffer, episodes, batch_size):
for episode in range(episodes):
state = env.reset()
done = False
episode_reward = 0
while not done:
# 选择动作
action = agent.select_action(state)
# 执行动作
next_state, reward, done, _ = env.step(action)
# 添加样本到缓冲区
buffer.add(state, action, next_state, reward, done)
# 更新网络
if len(buffer.buffer) > batch_size:
agent.update(buffer, batch_size)
state = next_state
episode_reward += reward
print("Episode: {}, Reward: {}".format(episode, episode_reward))
# 创建环境
env = gym.make("CartPole-v0")
# 创建智能体和缓冲区
agent = MADDPG(env.observation_space.shape[0], env.action_space.shape[0], env.action_space.high[0])
buffer = ReplayBuffer(100000)
# 训练
train(env, agent, buffer, episodes=100, batch_size=128)
```
这里的MADDPG实现比较简单,主要是为了演示MADDPG的基本思想。在实际应用中,可能需要对代码进行更多的改进和优化。
阅读全文
相关推荐
![.zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231044955.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)