稀疏滤波的python代码
时间: 2023-05-28 13:01:05 浏览: 199
movielens数据和协同滤波python代码
以下是稀疏滤波的Python代码:
```
import numpy as np
from scipy import sparse
def sparse_filter(image, kernel):
"""
Applies sparse filtering to an image using a given kernel.
Parameters:
image (ndarray): The image to be filtered, as a 2D numpy array.
kernel (ndarray or sparse matrix): The kernel to be applied to the image.
Returns:
filtered_image (ndarray): The filtered image, as a 2D numpy array.
"""
# Ensure kernel is a sparse matrix
if not isinstance(kernel, sparse.spmatrix):
kernel = sparse.csr_matrix(kernel)
# Define sizes of image and kernel
m, n = image.shape
k, l = kernel.shape
# Pad image with zeros to handle edges of the image
padded_image = np.pad(image, (k//2, l//2), mode='constant')
# Define sparse matrix to store filter coefficients
A = sparse.lil_matrix((m*n, m*n))
# Loop through each pixel in the image
for i in range(m):
for j in range(n):
# Define indices of kernel centered at current pixel
k_min, k_max = i, i + k
l_min, l_max = j, j + l
# Extract submatrix from padded image centered at current pixel
sub_image = padded_image[k_min:k_max, l_min:l_max]
# Flatten submatrix and kernel into column vectors
sub_image_flat = sub_image.flatten()
kernel_flat = kernel.flatten()
# Calculate filter coefficient for current pixel
coeff = np.dot(kernel_flat, sub_image_flat)
# Add coefficient to diagonal of sparse matrix
index = i*n + j
A[index,index] = coeff
# Apply filter to image
filtered_image = A.dot(image.flatten())
filtered_image = filtered_image.reshape(m, n)
return filtered_image
```
使用示例:
```
import matplotlib.pyplot as plt
from skimage import data
from scipy import ndimage
# Load an image
image = data.camera()
# Define a Gaussian kernel
sigma = 2
size = int(sigma*6) + 1
kernel = ndimage.gaussian_filter(np.eye(size), sigma)
# Apply sparse filtering to image
filtered_image = sparse_filter(image, kernel)
# Display the original and filtered images side by side
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 5))
ax1.imshow(image, cmap='gray')
ax1.set_title('Original Image')
ax2.imshow(filtered_image, cmap='gray')
ax2.set_title('Filtered Image')
plt.show()
```
阅读全文