from tensorflow import keras from tensorflow.keras import Sequential, layers from tensorflow.keras.layers import Dense, Dropout, BatchNormalization from tensorflow.keras.callbacks import EarlyStopping这段PYTHON代码有问题吗
时间: 2023-08-18 07:06:25 浏览: 178
这段Python代码没有问题,它使用了TensorFlow 2.x版本的Keras API,导入了Sequential模型、各种层(Dense、Dropout、BatchNormalization),以及EarlyStopping回调函数。这些模块和函数都是从`tensorflow`和`tensorflow.keras`中导入的。这是TensorFlow 2.x版本的写法,与早期版本的写法略有不同,但是在TensorFlow 2.x版本中是正确的。所以如果你使用的是TensorFlow 2.x版本的话,这段代码是没有问题的。
相关问题
from tensorflow import keras from keras import Sequential, layers from keras.layers import Dense, Dropout, BatchNormalization from keras.callbacks import EarlyStopping有错误吗
代码有点小错误,应该改为:
```python
from tensorflow import keras
from tensorflow.keras import Sequential, layers
from tensorflow.keras.layers import Dense, Dropout, BatchNormalization
from tensorflow.keras.callbacks import EarlyStopping
```
在导入Keras的时候,应该使用`from tensorflow import keras`,因为Keras已经合并到TensorFlow中了。同时,Keras的模型和层应该从`tensorflow.keras`中导入,而不是从`keras`中导入。最后,回调函数也应该从`tensorflow.keras.callbacks`中导入。
import os os.environ['TF_CPP_MIN_LOG_LEVEL']='2' import os from tensorflow import keras import matplotlib.pyplot as plt import numpy as np import tensorflow as tf from sklearn.model_selection import train_test_split from tensorflow.keras import Model from tensorflow.keras.layers import Conv2D, BatchNormalization, Activation, MaxPool2D, Dropout, Flatten, Dense np.set_printoptions(threshold=np.inf) from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense from tensorflow.keras.utils import plot_model # 创建模型 model = Sequential() model.add(Conv2D(6, (3, 3), activation='relu', padding='same', input_shape=(3, 1024, 1))) model.add(Conv2D(16, (3, 3), activation='relu'), padding='same') model.add(MaxPooling2D((2, 2))) model.add(Dropout(0.1)) model.add(Flatten()) model.add(Dense(1024, activation='relu')) model.add(Dropout(0.2)) model.add(Dense(225, activation='sigmoid')) # 输出模型结构图表 plot_model(model, show_shapes=True) TypeError: add() got an unexpected keyword argument 'padding'
在第6行和第7行中,您的代码中有一些语法错误。请注意在第6行中,由于缺少右括号,导致第7行的参数被视为model.add()函数的参数,而不是Conv2D()函数的参数。此外,在第7行中,您意外地在Conv2D()函数的括号之外使用了一个逗号。因此,您可以将代码更改如下所示:
```python
import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
import os
from tensorflow import keras
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from sklearn.model_selection import train_test_split
from tensorflow.keras import Model
from tensorflow.keras.layers import Conv2D, BatchNormalization, Activation, MaxPool2D, Dropout, Flatten, Dense
np.set_printoptions(threshold=np.inf)
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense
from tensorflow.keras.utils import plot_model
# 创建模型
model = Sequential()
model.add(Conv2D(6, (3, 3), activation='relu', padding='same', input_shape=(3, 1024, 1)))
model.add(Conv2D(16, (3, 3), activation='relu', padding='same'))
model.add(MaxPooling2D((2, 2)))
model.add(Dropout(0.1))
model.add(Flatten())
model.add(Dense(1024, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(225, activation='sigmoid'))
# 输出模型结构图表
plot_model(model, show_shapes=True)
```
请注意,在第6行和第7行中,我们已经修复了语法错误,并将输入参数放在正确的位置。现在,代码应该可以正常运行,输出模型结构图表。
阅读全文