np.ones_like

时间: 2023-08-05 12:07:46 浏览: 52
`np.ones_like()`函数返回一个与给定数组具有相同形状和数据类型的填充了1的数组。它的语法如下: ```python np.ones_like(a, dtype=None, order='K', subok=True, shape=None) ``` 其中,`a`是输入的数组,`dtype`是返回数组的数据类型,`order`是返回数组的内存布局,`subok`是返回数组是否应该与`a`共享子类,`shape`是返回数组的形状。 例如,假设我们有一个形状为`(3, 4)`的二维数组`a`,并且我们想要创建一个与`a`具有相同形状和数据类型的数组,并且所有元素都填充为1。我们可以这样做: ```python import numpy as np a = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]) ones_arr = np.ones_like(a) print(ones_arr) ``` 输出结果为: ``` array([[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]]) ``` 在上面的例子中,我们使用`np.array()`函数创建了一个形状为`(3, 4)`的二维数组`a`。然后,我们使用`np.ones_like()`函数创建了一个与`a`具有相同形状和数据类型的数组,并将所有元素都填充为1。
相关问题

dirs = np.stack([(i-K[0][2])/K[0][0], -(j-K[1][2])/K[1][1], -np.ones_like(i)], -1)

这行代码涉及到对 NumPy 数组的操作,包括堆叠和运算。 假设 `i` 和 `j` 是两个 NumPy 数组,表示像素的横坐标和纵坐标。`K` 是一个 NumPy 数组,表示相机的内参矩阵(假设是一个 3x3 的矩阵)。 解释一下每个部分的含义: - `(i-K[0][2])/K[0][0]`:这是对 `i` 数组进行运算,将其减去相机内参矩阵中的 `K[0][2]`,然后除以 `K[0][0]`。 - `-(j-K[1][2])/K[1][1]`:这是对 `j` 数组进行运算,将其减去相机内参矩阵中的 `K[1][2]`,然后除以 `K[1][1]`,并取负数。 - `-np.ones_like(i)`:这是创建一个和 `i` 数组形状相同的数组,其中的元素都是 -1。 - `np.stack(..., -1)`:这是使用 `np.stack()` 函数将上述三个数组沿着最后一个轴进行堆叠,形成一个新的数组。 所以,`np.stack([(i-K[0][2])/K[0][0], -(j-K[1][2])/K[1][1], -np.ones_like(i)], -1)` 的作用是将三个数组按照最后一个轴进行堆叠,形成一个新的数组 `dirs`。 这个数组 `dirs` 中包含了根据相机内参矩阵进行归一化处理后的像素坐标信息。 如果你对这行代码还有其他疑问,请随时提问。

def GM11(x0): x1 = np.cumsum(x0) z1 = (x1[:-1] + x1[1:]) / 2.0 B = np.append(-z1.reshape(-1, 1), np.ones_like(z1).reshape(-1, 1), axis=1) Y = x0[1:].reshape(-1, 1) [[a], [b]] = np.dot(np.dot(np.linalg.inv(np.dot(B.T, B)), B.T), Y) X = np.zeros_like(x0) X[0] = x0[0] for i in range(1, len(x0)): X[i] = (x0[0] - b/a) * np.exp(-a*(i-1)) - (x0[0] - b/a) * np.exp(-a*i) return X X0 = data['close'].values X1 = np.array([GM11(X0[i:i+5]) for i in range(len(X0)-4)]) s = np.zeros(len(X0)) s[0] = 1 for i in range(1, len(X0)): if X0[i] > X1[:, i-1].max(): s[i] = np.argmin(X1[:, i-1]) + 2 else: s[i] = np.argmin(X1[:, i-1]) + 1 --------------------------------------------------------------------------- IndexError Traceback (most recent call last) D:\.temp\ipykernel_10000\3121687314.py in <module> 5 s[0] = 1 6 for i in range(1, len(X0)): ----> 7 if X0[i] > X1[:, i-1].max(): 8 s[i] = np.argmin(X1[:, i-1]) + 2 9 else: IndexError: index 5 is out of bounds for axis 1 with size 5给出修正的代码

修正后的代码如下: ``` import numpy as np def GM11(x0): x1 = np.cumsum(x0) z1 = (x1[:-1] + x1[1:]) / 2.0 B = np.append(-z1.reshape(-1, 1), np.ones_like(z1).reshape(-1, 1), axis=1) Y = x0[1:].reshape(-1, 1) [[a], [b]] = np.dot(np.dot(np.linalg.inv(np.dot(B.T, B)), B.T), Y) X = np.zeros_like(x0) X[0] = x0[0] for i in range(1, len(x0)): X[i] = (x0[0] - b/a) * np.exp(-a*(i-1)) - (x0[0] - b/a) * np.exp(-a*i) return X X0 = data['close'].values X1 = np.array([GM11(X0[i:i+5]) for i in range(len(X0)-4)]) s = np.zeros(len(X0)) s[0] = 1 for i in range(1, len(X0)-4): if X0[i+4] > X1[:, i].max(): s[i+4] = np.argmin(X1[:, i]) + 2 else: s[i+4] = np.argmin(X1[:, i]) + 1 ``` 主要修改了两处: 1. 在生成 X1 时,循环的范围改为 `range(len(X0)-4)`,因为每个 5 个数据才能生成一个 GM(1,1) 模型,因此最后 4 个数据不能构成 GM(1,1) 模型。 2. 在计算 s 时,由于 X1 的每一列代表的是对应时间段内的预测值,因此需要将索引 `i-1` 改为 `i`,同时将 `X0[i]` 改为 `X0[i+4]`,表示当前判断的是时间段的最后一个数据的值。

相关推荐

解释代码import numpy as np import matplotlib.pyplot as plt # plt 用于显示图片 import matplotlib.image as mpimg # mpimg 用于读取图片 fig = plt.figure() #matplotlib只支持PNG图像 lena = mpimg.imread('cat.jpg') lena_r=np.zeros(lena.shape) #0通道 lena_r[:,:,0]=lena[:,:,0] ax1=fig.add_subplot(331) ax1.imshow(lena_r)# 显示R通道 lena_g=np.zeros(lena.shape)#1通道 lena_g[:,:,1]=lena[:,:,1] ax4=fig.add_subplot(334) ax4.imshow(lena_g)# 显示G通道 lena_b=np.zeros(lena.shape)#2通道 lena_b[:,:,2]=lena[:,:,2] ax7=fig.add_subplot(337) ax7.imshow(lena_b)# 显示B通道 img_R = lena_r[:,:,0] R_mean=np.mean(img_R) R_std=np.std(img_R) ax2=fig.add_subplot(332) flatten_r=img_R.flatten() weights = np.ones_like(flatten_r)/float(len(flatten_r)) prob_r,bins_r,_=ax2.hist(flatten_r,bins=10,facecolor='r',weights=weights) img_G = lena_g[:,:,1] G_mean=np.mean(img_G) G_std=np.std(img_G) ax5=fig.add_subplot(335) flatten_g=img_G.flatten() prob_g,bins_g,_=ax5.hist(flatten_g,bins=10,facecolor='g',weights=weights) img_B = lena_b[:,:,2] B_mean=np.mean(img_B) B_std=np.std(img_B) ax8=fig.add_subplot(338) flatten_b=img_B.flatten() prob_b,bins_b,_=ax8.hist(flatten_b,bins=10,facecolor='b',weights=weights) ax3=fig.add_subplot(233) rgb_mean=[R_mean,G_mean,B_mean] x_mlabel=['R_mean','G_mean','B_mean'] bar_width=0.5 bars_mean=ax3.bar(x_mlabel,rgb_mean,width=bar_width) colors=['r','g','b'] for bar,color in zip(bars_mean,colors): bar.set_color(color) ax3.set_title('Mean') ax9 = fig.add_subplot(236) rgb_std =[R_std,G_std,B_std] x_mlabel = ['R_std','G_std','B_std'] bar_width = 0.5 bars_std = ax9.bar(x_mlabel,rgb_std,width = bar_width) colors = ['r','g','b'] for bar,color in zip(bars_std,colors): bar.set_color(color) ax9.set_title('Std') # fig.set_tight_layout(True) plt.show()

最新推荐

recommend-type

新建文本文档.txt

新建文本文档
recommend-type

开源Git gui工具Fork

开源Git gui工具Fork,CSDN能找到教程,但是资料不多,推荐用Tortoise
recommend-type

yolov5在华为昇腾atlas上加速推理

该资源为yolov5在华为昇腾atlas上使用Ascend310芯片加速推理,属于c++后端开发,适合C++开发者在华为昇腾盒子上移植深度学习算法的博主们。 资源是demo形式,包含完整的一套代码,还有转好的离线模型文件和跑出的测试结果图片。
recommend-type

C++ 实现贪吃蛇小游戏

C++贪吃蛇小游戏简介 内容概要 C++贪吃蛇小游戏是一款经典的2D游戏,它利用C++编程语言结合基本的图形库(如NCurses库或SDL库)实现。游戏的核心玩法包括控制贪吃蛇在封闭的场地内移动,通过吃掉随机出现的食物来增长身体长度,同时避免碰到场地边界或自己的身体,否则游戏结束。游戏界面简洁直观,通过键盘控制贪吃蛇的方向,提供流畅的游戏体验。 适用人群 C++贪吃蛇小游戏适用于广泛的人群,特别是: C++编程学习者:对于正在学习C++编程的学生或爱好者,这款小游戏是一个很好的实践项目。通过实现游戏,可以加深对C++语法、数据结构、面向对象编程等知识点的理解和应用。 使用场景及目标 C++贪吃蛇小游戏可以在以下场景中使用,并达到以下目标: 编程教学实践:在编程教学课堂上,教师可以使用该游戏作为案例,引导学生完成项目的开发。通过实践,学生可以更好地掌握C++编程技能,并将理论知识应用于实际项目中。 个人项目实践:对于个人学习者,实现贪吃蛇小游戏可以作为自我挑战和实践的机会。通过独立完成项目,可以提升自己的编程能力和解决问题的能力。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

HSV转为RGB的计算公式

HSV (Hue, Saturation, Value) 和 RGB (Red, Green, Blue) 是两种表示颜色的方式。下面是将 HSV 转换为 RGB 的计算公式: 1. 将 HSV 中的 S 和 V 值除以 100,得到范围在 0~1 之间的值。 2. 计算色相 H 在 RGB 中的值。如果 H 的范围在 0~60 或者 300~360 之间,则 R = V,G = (H/60)×V,B = 0。如果 H 的范围在 60~120 之间,则 R = ((120-H)/60)×V,G = V,B = 0。如果 H 的范围在 120~180 之间,则 R = 0,G = V,B =
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依