用matlab绘制小球在 莫比乌斯带上绕行一周的动画【选作】 x = (2+u*cos(v/2)*cos(v); y = (2+u*cos(v/2)*sin(v); z = u*sin(v/2);

时间: 2024-04-30 08:23:16 浏览: 9
以下是一个可能的解法: ```matlab % 设置莫比乌斯带的参数范围 u_min = 0.5; u_max = 1.5; v_min = 0; v_max = 2*pi; % 设置小球的初始位置和速度 x0 = 2*cos(v_min/2)*cos(v_min); y0 = 2*cos(v_min/2)*sin(v_min); z0 = sin(v_min/2); vx = 0.1; vy = 0.1; vz = 0.1; % 创建莫比乌斯带的网格 u = linspace(u_min, u_max, 50); v = linspace(v_min, v_max, 100); [U, V] = meshgrid(u, v); X = 2*U.*cos(V/2).*cos(V); Y = 2*U.*cos(V/2).*sin(V); Z = U.*sin(V/2); % 创建画布和坐标轴 figure; axis([-2 2 -2 2 -1 1]); axis equal; axis manual; hold on; % 绘制莫比乌斯带 surf(X, Y, Z, 'FaceAlpha', 0.5, 'EdgeColor', 'none'); % 绘制小球的初始位置 ball = plot3(x0, y0, z0, 'o', 'MarkerSize', 20, 'MarkerFaceColor', 'r'); % 记录时间和帧数 dt = 0.05; t = 0; frame = 1; % 循环更新小球的位置和速度 while true % 计算小球的加速度(指向莫比乌斯带的法向量) [nx, ny, nz] = surfnorm(X, Y, Z); ax = interp2(U, V, nx, u_max, mod(v0, v_max)); ay = interp2(U, V, ny, u_max, mod(v0, v_max)); az = interp2(U, V, nz, u_max, mod(v0, v_max)); % 更新小球的速度和位置 vx = vx + ax*dt; vy = vy + ay*dt; vz = vz + az*dt; x = x0 + vx*dt; y = y0 + vy*dt; z = z0 + vz*dt; % 绘制小球的新位置 set(ball, 'XData', x, 'YData', y, 'ZData', z); % 更新时间和帧数 t = t + dt; frame = frame + 1; % 如果小球回到了初始位置,就结束循环 if norm([x y z]-[x0 y0 z0]) < 0.1 && frame > 10 break; end % 等待一段时间,以控制动画速度 pause(0.01); end ``` 这段代码的主要思路是,先用 `surf` 函数创建莫比乌斯带的网格,然后循环更新小球的位置和速度。在更新小球的位置时,需要计算小球所在点的法向量,以确定小球的加速度方向。这里使用 `surfnorm` 函数来计算法向量。最后,当小球回到初始位置时,结束循环。在循环中使用 `pause` 函数来控制动画的速度。

相关推荐

最新推荐

recommend-type

基于Python的蓝桥杯竞赛平台的设计与实现

【作品名称】:基于Python的蓝桥杯竞赛平台的设计与实现 【适用人群】:适用于希望学习不同技术领域的小白或进阶学习者。可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【项目介绍】:基于Python的蓝桥杯竞赛平台的设计与实现
recommend-type

python实现基于深度学习TensorFlow框架的花朵识别项目源码.zip

python实现基于深度学习TensorFlow框架的花朵识别项目源码.zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

导入numpy库,创建两个包含9个随机数的3*3的矩阵,将两个矩阵分别打印出来,计算两个数组的点积并打印出来。(random.randn()、dot()函数)

可以的,以下是代码实现: ```python import numpy as np # 创建两个包含9个随机数的3*3的矩阵 matrix1 = np.random.randn(3, 3) matrix2 = np.random.randn(3, 3) # 打印两个矩阵 print("Matrix 1:\n", matrix1) print("Matrix 2:\n", matrix2) # 计算两个数组的点积并打印出来 dot_product = np.dot(matrix1, matrix2) print("Dot product:\n", dot_product) ``` 希望