用python实现车牌识别
时间: 2023-09-19 07:10:14 浏览: 116
License_Plate_Recognition_For_Car_With_
要实现车牌识别,可以使用深度学习技术。以下是一个基本的车牌识别的Python代码示例:
1. 导入必要的库和模型
```python
import cv2
import numpy as np
import tensorflow as tf
# 导入模型
model = tf.keras.models.load_model('path/to/model.h5')
```
2. 加载图像并进行预处理
```python
# 加载图像
img = cv2.imread('path/to/image.jpg')
# 转换为灰度图像
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 去除噪声
blur = cv2.GaussianBlur(gray, (5, 5), 0)
# 应用阈值
thresh = cv2.adaptiveThreshold(blur,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,\
cv2.THRESH_BINARY,11,2)
```
3. 检测车牌区域
```python
# 检测车牌区域
contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
contours = sorted(contours, key=lambda x: cv2.contourArea(x), reverse=True)
for cnt in contours:
approx = cv2.approxPolyDP(cnt, 0.01 * cv2.arcLength(cnt, True), True)
if len(approx) == 4:
x, y, w, h = cv2.boundingRect(cnt)
if w / h > 2.5 and w / h < 4:
plate_img = img[y:y + h, x:x + w]
break
```
4. 车牌字符分割和识别
```python
# 车牌字符分割和识别
plate_img_gray = cv2.cvtColor(plate_img, cv2.COLOR_BGR2GRAY)
plate_img_blur = cv2.GaussianBlur(plate_img_gray, (5, 5), 0)
plate_img_thresh = cv2.adaptiveThreshold(plate_img_blur,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,\
cv2.THRESH_BINARY,11,2)
contours, _ = cv2.findContours(plate_img_thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
contours = sorted(contours, key=lambda x: cv2.contourArea(x), reverse=True)
plate_chars = []
for cnt in contours:
x, y, w, h = cv2.boundingRect(cnt)
if w / h > 0.2 and w / h < 1.0 and w > 10 and h > 20:
plate_char = plate_img_gray[y:y + h, x:x + w]
plate_char = cv2.resize(plate_char, (28, 28))
plate_char = np.expand_dims(plate_char, axis=-1)
plate_char = np.expand_dims(plate_char, axis=0)
plate_char = plate_char / 255.0
pred = model.predict(plate_char)
plate_chars.append(chr(pred + 65))
plate_number = ''.join(plate_chars)
```
这是一个基本的车牌识别的Python代码示例。但是,由于车牌识别是一个复杂的问题,实际上需要更复杂的算法和模型来实现更准确的识别。
阅读全文