reflexive_closure = [[matrix[i][j] or (i == j and matrix[i][j] == 0) for j in range(n)] for i in range(n)] print("自反闭包为:") for row in reflexive_closure: print(row)为什么输出的列表里有FALSE

时间: 2024-03-26 07:41:59 浏览: 12
这是因为在 Python 中,布尔值 False 会被转换为整数 0,而布尔值 True 会被转换为整数 1。因此,在 reflexive_closure 列表中,如果矩阵中某个位置的值为 False,它会被转换为整数 0 并存储在列表中。 如果希望只输出矩阵中的非零整数,可以在输出时添加一个判断条件,只输出大于 0 的元素,如下所示: ``` reflexive_closure = [[matrix[i][j] or (i == j and matrix[i][j] == 0) for j in range(n)] for i in range(n)] print("自反闭包为:") for row in reflexive_closure: int_row = [elem for elem in row if isinstance(elem, int) and elem > 0] print(int_row) ``` 这样就只输出了大于 0 的整数元素,False 不会被输出。
相关问题

优化reflexive_closure = [[matrix[i][j] or (i == j and matrix[i][j] == 0) for j in range(n)] for i in range(n)] print("自反闭包为:") for row in reflexive_closure: print(row)保证输出的列表里只有int类型

好的,您的问题是如何优化这段代码,使输出的列表只包含 int 类型。 可以使用 isinstance() 函数判断元素是否为 int 类型,并在输出时只输出 int 类型的元素。以下是修改后的代码: ``` reflexive_closure = [[matrix[i][j] or (i == j and matrix[i][j] == 0) for j in range(n)] for i in range(n)] print("自反闭包为:") for row in reflexive_closure: int_row = [elem for elem in row if isinstance(elem, int)] print(int_row) ``` 这里使用列表推导式将每一行中的 int 类型元素过滤出来,并输出该行中的 int 类型元素。

请使用C语言编写以下算法的代码:首先将任意关系通过关系矩阵表示,关系的自反闭包只需将矩阵的主对角线元素全部置为1;关系的对称闭包即关系矩阵与其转置矩阵进行加法运算(逻辑加);关系的传递闭包转化为矩阵的计算,计算公式为 Mt = M + M2 + M3 + …(逻辑加) 其中M为关系矩阵,Mt为传递闭包的矩阵。 关系的传递闭包也可用Floyd-Warshall算法计算,效率更高,Floyd-Warshall算法原理为: 设R的关系矩阵为n阶矩阵M,传递闭包矩阵为A = A[j, k], (1)令矩阵A = M; (2) for i=1 to n do { for j=1 to n do { if A[j, i]=1, then { for k=1 to n do A[j, k] = A[j, k] || A[i, k];} // 运算符||为逻辑或 } }

以下是使用C语言编写的关系矩阵及闭包算法代码,包括自反闭包、对称闭包和传递闭包的计算: ```c #include <stdio.h> #include <stdlib.h> #define MAX_SIZE 100 void print_matrix(int matrix[MAX_SIZE][MAX_SIZE], int size) { for (int i = 0; i < size; i++) { for (int j = 0; j < size; j++) { printf("%d ", matrix[i][j]); } printf("\n"); } } void reflexive_closure(int matrix[MAX_SIZE][MAX_SIZE], int size) { for (int i = 0; i < size; i++) { matrix[i][i] = 1; } } void symmetric_closure(int matrix[MAX_SIZE][MAX_SIZE], int size) { int temp_matrix[MAX_SIZE][MAX_SIZE]; for (int i = 0; i < size; i++) { for (int j = 0; j < size; j++) { temp_matrix[i][j] = matrix[i][j] || matrix[j][i]; } } for (int i = 0; i < size; i++) { for (int j = 0; j < size; j++) { matrix[i][j] = temp_matrix[i][j]; } } } void transitive_closure(int matrix[MAX_SIZE][MAX_SIZE], int size) { int temp_matrix[MAX_SIZE][MAX_SIZE]; for (int i = 0; i < size; i++) { for (int j = 0; j < size; j++) { temp_matrix[i][j] = matrix[i][j]; } } for (int k = 0; k < size; k++) { for (int i = 0; i < size; i++) { for (int j = 0; j < size; j++) { matrix[i][j] = matrix[i][j] || (temp_matrix[i][k] && temp_matrix[k][j]); } } } } int main() { int size; printf("Enter the size of the matrix: "); scanf("%d", &size); int matrix[MAX_SIZE][MAX_SIZE]; printf("Enter the elements of the matrix: \n"); for (int i = 0; i < size; i++) { for (int j = 0; j < size; j++) { scanf("%d", &matrix[i][j]); } } printf("Original matrix:\n"); print_matrix(matrix, size); reflexive_closure(matrix, size); printf("Reflexive closure:\n"); print_matrix(matrix, size); symmetric_closure(matrix, size); printf("Symmetric closure:\n"); print_matrix(matrix, size); transitive_closure(matrix, size); printf("Transitive closure:\n"); print_matrix(matrix, size); return 0; } ```

相关推荐

用Python实现。关系性质判断及闭包计算 1、实验目的 (1)熟悉关系的性质,掌握求判断关系性质的方法。 (2)熟悉Warshall算法,掌握求关系的自反闭包、对称闭包和传递闭包的方法。 2、实验内容与要求 定义1 设R是集合X上的二元关系,对任意的x∈X,都满足<x,x>∈R,则R是自反的。 定义2 设R是集合X上的二元关系,对任意的x∈X,都满足<x,x>ÏR,则R是反自反的。 定义3 设R是集合X上的二元关系,对任意的x,y∈X,满足<x,y>∈RÞ<y,x>∈R,则R是对称的。 定义4 设R是集合X上的二元关系,对任意的x,y∈X,满足<x,y>∈R∧<y,x>∈RÞx=y,则R是反对称的。 定义5 设R是集合X上的二元关系,对任意的x,y,z∈X,满足<x,y>∈R∧<y,z>∈RÞ<x,z>∈R,则R是传递的。 定义6 设R是A上的二元关系,R的自反(对称、传递)闭包是关系R1,则 ① R1是自反的(对称的、传递的) ② RÍR1 ③ 对任何自反的(对称的、传递的)关系R2,若RÍR2,则R1ÍR2。 R的自反、对称和传递闭包分别记为r(R)、s(R)和t(R)。 定理1 令RÍA´A,则 ① r(R)=R∪IA ② s(R)=R∪R-1 ③ t(R)=R∪R2∪R3… Warshall算法:设R是n个元素集合上的二元关系,M是R的关系矩阵; (1) 置新矩阵A:=M (2) 置i:=1; (3) for j=1 to n do if A[j,i]=1 then do for k=1 to n do A[j,k]:=A[j,k]+A[i,k] (4) i=i+1; (5) if i<=n then to (3) else stop 本实验要求: (1)从键盘输入一个关系的关系矩阵,判断该关系是否是自反的、对称的、传递的、反自反的、反对称的。 (2)从键盘输入一个关系的关系矩阵,计算其自反闭包、对称闭包和传递闭包,计算传递闭包时使用Warshall算法。

最新推荐

recommend-type

2024-2030全球与中国低脂凝乳奶酪市场现状及未来发展趋势.docx

2024-2030全球与中国低脂凝乳奶酪市场现状及未来发展趋势
recommend-type

毕业设计:vue+springboot乌鲁木齐南山冰雪旅游服务网站(源码 + 数据库 + 说明文档)

毕业设计:vue+springboot乌鲁木齐南山冰雪旅游服务网站(源码 + 数据库 + 说明文档) 2 开发工具及技术 2 2.1 B/S结构的介绍 2 2.2 JSP及SpringBoot技术的介绍 2 2.3 HTML及Vue技术的介绍 2 2.4 MYSQL数据库的介绍 3 2.5 开发环境的介绍 3 3 需求分析 4 3.1 可行性分析 4 3.2 功能需求分析 4 3.3 非功能需求分析 4 4 总体设计 6 4.1 系统总体结构设计 6 4.2 系统的数据库设计 6 5 系统功能实现 6 5.1 注册用户 6 5.2 管理员用户 6 6 系统测试 6 6.1 测试目的 6 6.2 测试内容 6 6.3 测试总结 6
recommend-type

C# 超简单的离线人脸识别库 ( 基于 SeetaFace6 ).zip

c
recommend-type

华为数字化转型实践28个精华问答.docx

华为数字化转型实践28个精华问答.docx
recommend-type

2024年全球二极管阵列光谱仪行业总体规模、主要企业国内外市场占有率及排名.docx

2024年全球二极管阵列光谱仪行业总体规模、主要企业国内外市场占有率及排名
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Redis验证与连接:快速连接Redis服务器指南

![Redis验证与连接:快速连接Redis服务器指南](https://img-blog.csdnimg.cn/20200905155530592.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzMzNTg5NTEw,size_16,color_FFFFFF,t_70) # 1. Redis验证与连接概述 Redis是一个开源的、内存中的数据结构存储系统,它使用键值对来存储数据。为了确保数据的安全和完整性,Redis提供了多
recommend-type

gunicorn -k geventwebsocket.gunicorn.workers.GeventWebSocketWorker app:app 报错 ModuleNotFoundError: No module named 'geventwebsocket' ]

这个报错是因为在你的环境中没有安装 `geventwebsocket` 模块,可以使用下面的命令来安装: ``` pip install gevent-websocket ``` 安装完成后再次运行 `gunicorn -k geventwebsocket.gunicorn.workers.GeventWebSocketWorker app:app` 就不会出现这个报错了。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。