def MEAN_Spot(opt): # channel 1 inputs1 = layers.Input(shape=(42,42,1)) conv1 = layers.Conv2D(3, (5,5), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs1) bn1 = layers.BatchNormalization()(conv1) pool1 = layers.MaxPooling2D(pool_size=(3, 3), padding='same', strides=(3,3))(bn1) do1 = layers.Dropout(0.3)(pool1) # channel 2 inputs2 = layers.Input(shape=(42,42,1)) conv2 = layers.Conv2D(3, (5,5), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs2) bn2 = layers.BatchNormalization()(conv2) pool2 = layers.MaxPooling2D(pool_size=(3, 3), padding='same', strides=(3,3))(bn2) do2 = layers.Dropout(0.3)(pool2) # channel 3 inputs3 = layers.Input(shape=(42,42,1)) conv3 = layers.Conv2D(8, (5,5), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs3) bn3 = layers.BatchNormalization()(conv3) pool3 = layers.MaxPooling2D(pool_size=(3, 3), padding='same', strides=(3,3))(bn3) do3 = layers.Dropout(0.3)(pool3) # merge 1 merged = layers.Concatenate()([do1, do2, do3]) # interpretation 1 merged_conv = layers.Conv2D(8, (5,5), padding='same', activation='relu', kernel_regularizer=l2(0.1))(merged) merged_pool = layers.MaxPooling2D(pool_size=(2, 2), padding='same', strides=(2,2))(merged_conv) flat = layers.Flatten()(merged_pool) flat_do = layers.Dropout(0.2)(flat) # outputs outputs = layers.Dense(1, activation='linear', name='spot')(flat_do) #Takes input u, v, os model = keras.models.Model(inputs=[inputs1, inputs2, inputs3], outputs=[outputs]) model.compile( loss={'spot':'mse'}, optimizer=opt, metrics={'spot':tf.keras.metrics.MeanAbsoluteError()}, ) return model 如何引入多头自注意力
时间: 2023-08-22 16:10:04 浏览: 66
要引入多头自注意力,需要在模型中添加一个多头自注意力层。可以使用 TensorFlow 的 MultiHeadAttention 类来实现这个层。以下是一个示例:
```
from tensorflow.keras.layers import MultiHeadAttention
# ...
# 在 interpretation 1 之前添加一个多头自注意力层
attn = MultiHeadAttention(num_heads=4, key_dim=32)
attn_out = attn(merged, merged, merged)
merged_conv = layers.Conv2D(8, (5,5), padding='same', activation='relu', kernel_regularizer=l2(0.1))(attn_out)
# ...
```
在这个示例中,我们使用 `MultiHeadAttention` 类创建了一个有 4 个头和 32 维键/值向量的多头自注意力层。然后,我们将多头自注意力层的输出传递给 `merged_conv` 层进行进一步处理。
相关问题
def MEAN_Spot(opt): # channel 1 inputs1 = layers.Input(shape=(42, 42, 1)) inputs2 = layers.Input(shape=(42, 42, 1)) inputs3 = layers.Input(shape=(42, 42, 1)) # merge 1 inputs = layers.Concatenate()([inputs1, inputs2, inputs3]) conv1 = layers.Conv2D(3, (7,7), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs)改为class定义形式
你可以将这段代码转化为一个类的形式,例如:
```
from tensorflow.keras import layers
from tensorflow.keras.regularizers import l2
class MeanSpot:
def __init__(self):
self.inputs1 = layers.Input(shape=(42, 42, 1))
self.inputs2 = layers.Input(shape=(42, 42, 1))
self.inputs3 = layers.Input(shape=(42, 42, 1))
def build(self):
# merge 1
inputs = layers.Concatenate()([self.inputs1, self.inputs2, self.inputs3])
conv1 = layers.Conv2D(3, (7,7), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs)
return conv1
```
这样,你就可以使用 `MeanSpot` 类来创建一个 `MEAN_Spot` 对象,然后调用 `build()` 方法来构建模型。例如:
```
mean_spot = MeanSpot()
model = mean_spot.build()
```
这个模型与原来的 `MEAN_Spot` 函数是等价的。
class定义basic block模块之后如何放到def MEAN_Spot(opt): # channel 1 inputs1 = layers.Input(shape=(42, 42, 1)) inputs2 = layers.Input(shape=(42, 42, 1)) inputs3 = layers.Input(shape=(42, 42, 1)) # merge 1 inputs = layers.Concatenate()([inputs1, inputs2, inputs3]) conv1 = layers.Conv2D(3, (7,7), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs)后面
在 `def MEAN_Spot(opt)` 函数中,先定义了3个输入张量 `inputs1`、`inputs2`、`inputs3`,然后通过 `layers.Concatenate()` 将这3个张量沿着通道维度拼接为一个张量 `inputs`。接着通过一个卷积层得到一个输出张量 `conv1`。如果要使用 `BasicBlock` 模块,需要将这个卷积层替换为一个或多个 `BasicBlock` 模块。代码示例如下:
```python
class MEAN_Spot(opt):
# channel 1
inputs1 = layers.Input(shape=(42, 42, 1))
inputs2 = layers.Input(shape=(42, 42, 1))
inputs3 = layers.Input(shape=(42, 42, 1))
# merge 1
inputs = layers.Concatenate()([inputs1, inputs2, inputs3])
# BasicBlock
conv1 = BasicBlock(out_channels=64, kernel_size=3, strides=1)(inputs)
conv1 = BasicBlock(out_channels=64, kernel_size=3, strides=1)(conv1)
# ...
```
这里假设 `BasicBlock` 类已经定义好了,并且传入的参数是输出通道数 `out_channels`、卷积核大小 `kernel_size` 和步长 `strides`。需要注意的是,在实际使用中,可能还需要根据具体情况在 `BasicBlock` 中添加一些其他的层或操作。
阅读全文