加权随机森林pyton代码
时间: 2023-06-04 14:07:02 浏览: 136
Sure, I can provide you with the Python code for weighted random forest. Here's an example:
```python
from sklearn.ensemble import RandomForestClassifier
from sklearn.utils.validation import check_random_state
class WeightedRandomForestClassifier(RandomForestClassifier):
def __init__(self,
n_estimators='warn',
criterion="gini",
max_depth=None,
min_samples_split=2,
min_samples_leaf=1,
min_weight_fraction_leaf=0.,
max_features="auto",
max_leaf_nodes=None,
min_impurity_decrease=0.,
min_impurity_split=None,
bootstrap=True,
oob_score=False,
n_jobs=None,
random_state=None,
verbose=0,
warm_start=False,
class_weight=None):
super().__init__(n_estimators=n_estimators,
criterion=criterion,
max_depth=max_depth,
min_samples_split=min_samples_split,
min_samples_leaf=min_samples_leaf,
min_weight_fraction_leaf=min_weight_fraction_leaf,
max_features=max_features,
max_leaf_nodes=max_leaf_nodes,
min_impurity_decrease=min_impurity_decrease,
min_impurity_split=min_impurity_split,
bootstrap=bootstrap,
oob_score=oob_score,
n_jobs=n_jobs,
random_state=random_state,
verbose=verbose,
warm_start=warm_start,
class_weight=class_weight)
def fit(self, X, y, sample_weight=None):
self.random_state_ = check_random_state(self.random_state)
if sample_weight is not None:
samp_wt = np.copy(sample_weight)
samp_wt /= samp_wt.sum()
else:
samp_wt = np.ones(X.shape[0]) / X.shape[0]
self.estimators_ = []
for i in range(self.n_estimators):
seed = self.random_state_.randint(np.iinfo(np.int32).max)
tree = self._make_estimator(append=False,
random_state=check_random_state(seed),
class_weight=self.class_weight)
X_sample, y_sample = resample(X, y, samp_wt, random_state=check_random_state(seed))
tree.fit(X_sample, y_sample)
self.estimators_.append(tree)
self.is_fitted_ = True
return self
```
This is an implementation of a weighted random forest classifier that inherits from the `RandomForestClassifier` class in scikit-learn. The `fit` method implements the weighting mechanism, where each sample in the training set is assigned a weight. The weights are used to determine the proportion of each class in the bootstrap samples used to grow each decision tree. Note that the `resample` function is used to generate the bootstrap samples with replacement, taking into account the sample weights.
I hope this helps! Let me know if you have any further questions.
阅读全文