通过sparkcontext获得txt后缀的数据集,并进行数据划分。使用pyspark mllib实现支持向量机代码,最后进行评估
时间: 2023-11-27 11:52:13 浏览: 82
首先,通过`SparkContext`读取txt文件:
```
from pyspark import SparkContext
sc = SparkContext("local", "SVMExample")
data = sc.textFile("path/to/data.txt")
```
接着,将数据集划分为训练集和测试集:
```
trainingData, testData = data.randomSplit([0.7, 0.3])
```
然后,使用`pyspark.mllib`中的`SVMWithSGD`训练模型:
```
from pyspark.mllib.classification import SVMWithSGD
from pyspark.mllib.regression import LabeledPoint
# 将数据集转换为LabeledPoint类型
training = trainingData.map(lambda line: LabeledPoint(label=line.split(',')[0], features=line.split(',')[1:]))
# 训练模型
model = SVMWithSGD.train(training)
```
最后,使用测试集评估模型:
```
from pyspark.mllib.evaluation import BinaryClassificationMetrics
# 将测试集转换为LabeledPoint类型
test = testData.map(lambda line: LabeledPoint(label=line.split(',')[0], features=line.split(',')[1:]))
# 预测测试集标签
predictions = model.predict(test.map(lambda x: x.features))
# 计算模型性能指标
metrics = BinaryClassificationMetrics(predictions.zip(test.map(lambda x: x.label)))
print("AUC:", metrics.areaUnderROC)
```
完整代码如下:
```
from pyspark import SparkContext
from pyspark.mllib.classification import SVMWithSGD
from pyspark.mllib.regression import LabeledPoint
from pyspark.mllib.evaluation import BinaryClassificationMetrics
sc = SparkContext("local", "SVMExample")
data = sc.textFile("path/to/data.txt")
trainingData, testData = data.randomSplit([0.7, 0.3])
training = trainingData.map(lambda line: LabeledPoint(label=line.split(',')[0], features=line.split(',')[1:]))
model = SVMWithSGD.train(training)
test = testData.map(lambda line: LabeledPoint(label=line.split(',')[0], features=line.split(',')[1:]))
predictions = model.predict(test.map(lambda x: x.features))
metrics = BinaryClassificationMetrics(predictions.zip(test.map(lambda x: x.label)))
print("AUC:", metrics.areaUnderROC)
```
阅读全文