broad learning forecast github

时间: 2023-05-15 10:03:13 浏览: 38
Broad Learning Forecast(BLF)是一种新兴的人工智能技术,是由清华大学研究团队提出的。该技术使用全连接网络架构,可以以非常低的计算成本和模型大小,处理大量输入数据。它还具有自适应学习能力,可以通过增加节点和隐层来扩展网络规模。 在GitHub上,BLF有一个开源的Python实现库,可以供研究者和开发人员使用和探索该技术。它包括基础的BLF模型以及一些扩展模块,例如分层BLF,多层BLF等。使用该库还可以进行各种实验和调整模型的参数,以最大限度地提高模型的准确性和性能。 BLF技术不仅可以应用于各种自然语言处理任务,如文本分类、情感分析和机器翻译等,还可以应用于图像处理、声音识别和时间序列等多个领域的预测任务。因此,BLF已经成为了一种非常有前途的技术,并已经在许多新兴数据驱动的领域得到了广泛应用。
相关问题

broad learning code

广义学习编码(Broad Learning Code)是一种机器学习方法,旨在实现对大规模多样化数据进行高效处理和分析的能力。该方法的主要思想是通过将问题分解为多个子问题来进行学习,并将其组合起来以实现对更广泛的数据进行建模和预测。 广义学习编码可以应用于各种领域,例如图像识别、自然语言处理和推荐系统等。在图像识别方面,广义学习编码可以将图像分成多个局部区域进行学习,并通过融合这些局部特征来实现对整体图像的准确识别。而在自然语言处理方面,广义学习编码可以将句子分成多个词或短语进行学习,并通过整合这些局部信息来理解整体句子的语义。在推荐系统中,广义学习编码可以将用户的历史行为分解为多个子行为,并将它们组合起来以实现对用户偏好的精准预测。 广义学习编码的优势在于可以并行处理多个子问题,并通过组合这些子问题的解决方案来实现对更复杂问题的处理。而且,广义学习编码不受特定领域的限制,可以应用于各种不同的数据类型和问题域。此外,广义学习编码还具有高效的计算性能和较低的存储需求,适用于大规模数据处理和分析。 总而言之,广义学习编码是一种灵活而高效的机器学习方法,能够有效处理和分析大规模多样化的数据。它的应用领域广泛,并且具有并行处理、高效计算和较小存储需求等优势。相信随着技术的进步和发展,广义学习编码将在各个领域中发挥越来越重要的作用。

broad learning system

广义学习系统(Broad Learning System)是一种新型的机器学习方法,它通过将神经网络分解为多个子网络,每个子网络学习不同的特征,从而实现高效的学习和预测。广义学习系统具有高度的灵活性和可扩展性,可以应用于各种不同的领域和任务,如图像识别、语音识别、自然语言处理等。

相关推荐

Computer Science Literature Review With the rapid development of computer technology, computer science has become an important and essential discipline in modern society. The literature review is a critical component of research in computer science, as it provides a comprehensive understanding of the current state of knowledge in a specific field. This paper presents a literature review of computer science, focusing on the fields of artificial intelligence, computer networks, and software engineering. Artificial Intelligence Artificial intelligence (AI) is a branch of computer science that focuses on creating intelligent machines that can perform tasks that typically require human intelligence. AI has a broad range of applications, from natural language processing and image recognition to robotics and autonomous vehicles. One of the most significant recent developments in AI is deep learning, which is a subfield of machine learning that uses neural networks to analyze and learn from large data sets. Deep learning has been used to improve speech recognition, image classification, and language translation. Another area of AI research is reinforcement learning, which involves training machines to make decisions based on rewards and punishments. Reinforcement learning has been used in game playing, robotics, and even finance. Computer Networks Computer networks are critical components of modern society, as they enable communication and data exchange between devices and systems. The internet is the most prominent example of a computer network, but there are many other types of networks, including local area networks (LANs) and wide area networks (WANs). One of the most significant recent developments in computer networks is the emergence of 5G technology, which promises to provide faster and more reliable wireless communication. 5G networks will enable new applications, such as autonomous vehicles and smart cities, that require high-speed and low-latency communication. Another area of network research is software-defined networking (SDN), which allows network administrators to programmatically control network behavior. SDN has been used to improve network efficiency, security, and scalability. Software Engineering Software engineering is the process of designing, developing, and maintaining software systems. The field has evolved significantly since the early days of programming, with the emergence of new development methodologies, such as agile and DevOps. One of the most significant recent developments in software engineering is the rise of cloud computing, which allows software to be deployed and accessed over the internet. Cloud computing has transformed the way software is developed and deployed, enabling new models of software delivery, such as software as a service (SaaS). Another area of software engineering research is the development of automated testing and deployment tools. These tools help developers identify and fix bugs more quickly and deploy software more easily and reliably. Conclusion Computer science is a rapidly evolving field, with new developments and innovations emerging on a regular basis. This literature review has highlighted some of the recent developments in artificial intelligence, computer networks, and software engineering. As the field continues to evolve, it will be essential to keep up with the latest research and trends to remain competitive and relevant.
"operands could not be broadcast together with shapes (203,) (203,1255) ()"的错误通常是由于两个数组的形状不兼容导致的。具体来说,错误提示中的(203,)表示一个形状为(203,)的一维数组,(203,1255)表示一个形状为(203,1255)的二维数组,而()表示一个标量值。 要解决这个错误,需要检查代码中涉及到的数组的形状,并确保它们在操作时是兼容的。例如,如果你要将一个一维数组加上一个标量值,你可以使用以下代码: python import numpy as np # 创建一个一维数组 a = np.array([1, 2, 3]) # 加上一个标量值 b = a + 1 在上面的代码中,a是一个形状为(3,)的一维数组,1是一个标量值。由于标量值可以被广播到与数组a相同的形状,因此可以直接执行a + 1的操作。这将得到一个新的一维数组b,其形状与a相同。 如果你要将一个二维数组加上一个标量值,则需要使用类似的方法。例如: python import numpy as np # 创建一个二维数组 a = np.array([[1, 2], [3, 4], [5, 6]]) # 加上一个标量值 b = a + 1 在上面的代码中,a是一个形状为(3,2)的二维数组,1是一个标量值。由于标量值可以被广播到与数组a相同的形状,因此可以直接执行a + 1的操作。这将得到一个新的二维数组b,其形状与a相同。 如果你需要将两个数组进行操作,例如相加或相乘,则需要确保这两个数组的形状是兼容的。具体来说,两个数组的形状应该在某些维度上是相同的,或者其中一个数组在某些维度上是1。例如,如果你要将一个形状为(203,)的一维数组加上一个形状为(203,1255)的二维数组,则可以使用以下代码: python import numpy as np # 创建一个一维数组 a = np.ones(203) # 创建一个二维数组 b = np.ones((203, 1255)) # 将一维数组广播为与二维数组相同的形状 a_broad = a.reshape(203, 1) # 执行加法操作 c = a_broad + b 在上面的代码中,我们使用np.ones()函数创建了一个形状为(203,)的一维数组a和一个形状为(203,1255)的二维数组b。由于这两个数组的形状不兼容,我们需要将一维数组a广播为与二维数组b相同的形状。我们可以使用reshape()函数将一维数组a变形为形状为(203,1)的二维数组a_broad,然后使用+运算符将其与二维数组b相加。这将得到一个新的二维数组c,其形状与b相同。 需要注意的是,在广播数组时,你需要确保数组的形状是可以广播的。具体来说,对于每一维,数组的形状要么相同,要么其中一个数组的长度为1。
### 回答1: 人工智能可以利用机器学习和数据分析的方法,来模拟人类的智能行为,帮助自动解决各种难题。它有助于推动技术的发展,改善人类的生活,提高工作效率和减少误差,它也可以模拟人类的智能,以便人们能够更好地理解世界。 ### 回答2: 人工智能(Artificial Intelligence,简称AI)是一种模拟人类智能的技术。它的应用正不断扩大,如自动驾驶、语音识别、机器翻译等。在未来的发展中,人工智能可能会呈现出以下几个趋势。 首先,人工智能将更加普及和渗透到我们的生活中。比如,智能家居将会成为我们居住空间的一部分,为我们提供更加智能化的生活体验。同时,在医疗领域,人工智能可能有望为疾病的诊断和治疗带来更多突破。此外,人工智能有望改变我们的工作模式,自动化和智能化的机器可能取代一些繁重和重复性的工作,从而释放出更多的人力资源。 其次,人工智能将进一步加强和改进其自学习的能力。目前,人工智能的很多应用还需要人工的干预和调整。然而,未来的人工智能系统可能会拥有更高的自主性和自适应性,能够通过不断学习和优化来自我进步。这将有助于提高人工智能系统的应用能力和适应不同环境的灵活性。 最后,人工智能的伦理和法律问题将成为重要的讨论和规范点。人工智能如同一把双刃剑,它的应用可能给社会带来巨大的益处,但也可能产生一些不利的影响。因此,我们需要制定相关的法律和伦理规范,确保人工智能的发展和应用符合社会的规范和道德底线。 总之,人工智能的发展前景广阔,应用范围广泛。但同时,我们也需要思考和解决与人工智能相关的问题,以保证其能够为人类带来最大的利益和效益。 ### 回答3: Artificial Intelligence (AI) is an evolving field with immense potential and implications. Engaging in a brainstorming session about AI can help us explore its broad applications and challenges. Here are a few ideas: 1. AI in Healthcare: AI can revolutionize healthcare by improving diagnostics accuracy, optimizing treatment plans, and enabling personalized medicine. It can assist doctors in analyzing patient history, identifying patterns, and predicting disease progression, leading to early interventions and better outcomes. 2. AI in Education: AI-driven platforms can personalize the learning experience, adapting content delivery, and pace to individual students. Virtual tutors can offer guidance and support, and AI can assist in grading assignments and exams, providing timely feedback. 3. AI in Transportation: Autonomous vehicles are a prime example of AI's potential impact on transportation. Self-driving cars can enhance road safety, reduce accidents caused by human errors, and alleviate traffic congestion. AI-powered predictive analytics can also optimize logistics and streamline transportation routes. 4. AI in Finance: AI algorithms can analyze large datasets, identify patterns, and make informed predictions, contributing to more accurate risk assessment and investment decisions. AI-powered chatbots can enhance customer service and streamline financial operations. 5. AI in Environment Conservation: AI can assist in monitoring and analyzing environmental data to detect and prevent natural disasters. It can also aid in wildlife conservation efforts by tracking animal behavior, detecting poaching activities, and preserving ecosystems. 6. Ethical Considerations: While AI offers numerous benefits, ethical concerns need to be addressed. Fairness, transparency, and accountability must guide algorithm development. Ensuring privacy and avoiding biases in AI systems are crucial aspects that need careful consideration. 7. AI and Future Employment: The rise of AI may reshape the job market, requiring a reevaluation of workforce skills. While AI might automate some tasks, it can also create new job opportunities, demanding skills in AI development, maintenance, and creativity. 8. AI in Social Interactions: AI-powered chatbots and virtual assistants are becoming increasingly sophisticated, empathetic, and capable of natural language processing. This could transform social interactions, enhance customer experiences, and change the way we communicate. As technology advances, exploring these possibilities through brainstorming sessions can help us harness AI's potential while also addressing any challenges that arise. It is important to continuously discuss and adapt to the evolving landscape of AI to maximize its benefits for society.
### 回答1: MSigDB 是一个由 Broad Institute 开发的基于基因组的数据库,可以用于研究基因调控、信号转导和基因组组学。可以通过运行不同的分析工具,将数据从 MSigDB 数据库中整理出来,以便进行进一步的分析和研究。 ### 回答2: MSigDB数据库是一个用于存储和管理基因表达数据的资源。该数据库包含了多种基因集合,这些基因集合是经过整理和分类的,可以用于基因功能注释、生物信息学分析和生物学研究等领域。 MSigDB数据库的数据整理过程主要包括以下几个步骤: 1. 数据收集:数据整理的第一步是收集已公开发表的基因表达数据集。这些数据集可能来自于不同的实验室、研究计划或出版物。收集到的数据需要进行评估和筛选,只选择质量高、可靠性较强的数据集。 2. 数据标准化:收集到的基因表达数据通常来自不同平台、实验条件和数据处理方法,因此需要对数据进行标准化处理,以确保数据在不同实验之间的可比性和一致性。常用的标准化方法包括批次效应校正、表达量归一化等。 3. 数据注释:对基因表达数据进行注释是数据整理的关键步骤之一。在MSigDB数据库中,基因集合会被分类和命名,如基因功能、代谢途径、疾病关联等。注释的过程可以利用已有的基因本体、生物通路数据库、药物数据库等进行自动化注释,也可以通过人工筛查和专家知识来完成。 4. 数据整合:整合不同来源和类型的基因表达数据是MSigDB数据库的重要功能之一。通过整合来自不同实验室和研究领域的数据,可以提高数据的丰富性和多样性,为用户提供更全面的基因功能注释和信息查询。 5. 数据更新:为了保持数据库的实用性和时效性,MSigDB数据库需要进行定期的数据更新和维护工作。随着科学研究的进展和新的基因表达数据的发表,已有的数据集可能需要修订或增补,同时还需要添加新的数据集和基因集合。 通过以上整理过程,MSigDB数据库能够为用户提供丰富的基因功能注释和信息查询服务,帮助研究人员在基因表达分析和生物学研究中发挥重要的作用。 ### 回答3: MSigDB(Molecular Signatures Database)是一个用于整理和维护基因表达数据的公共资源。它提供了关于基因集合的丰富信息,这些集合捕捉了在特定生物学过程、信号通路或疾病中诱导或调控的基因组表达模式。 MSigDB数据库数据的整理主要包括以下几个步骤: 1. 数据收集:MSigDB通过从公开可靠的基因表达数据集和文献中提取数据来收集基因集合。这些数据集可以包括微阵列、RNA测序和蛋白质组学等不同的实验技术。 2. 数据筛选:从收集到的数据中,进行筛选,保留与特定生物学过程、信号通路或疾病相关的基因集合。这些基因集合必须经过严格的筛选标准,以确保它们具有生物学上的重要性和可靠性。 3. 注释和分类:将基因集合进行注释,并根据其功能或参与的生物过程进行分类。这些注释可以包括基因的命名、功能、调控模式等信息,并与其他已知的基因集合进行关联。 4. 数据存储和更新:整理好的基因集合以数据库的形式存储,并定期进行更新。这样可以确保数据库包含最新的基因表达数据和注释信息,以满足研究人员和生物信息学家的需求。 5. 数据分享:MSigDB数据库将整理好的基因集合和相关信息通过在线平台向全球科学界进行分享。研究人员和生物信息学家可以通过查询数据库、下载基因集合和使用相关工具进行基因表达数据的分析和解释。 综上所述,MSigDB数据库数据的整理包括数据收集、筛选、注释和分类、存储更新以及数据分享等步骤。这些工作的目的是为研究人员提供一个可靠的资源,帮助他们在基因组表达数据中识别和研究与特定生物学过程、信号通路或疾病相关的基因集合。
pdf
During the past decade there has been an explosion in computation and information technology. With it has come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book descibes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learing (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting--the first comprehensive treatment of this topic in any book. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie wrote much of the statistical modeling software in S-PLUS and invented principal curves and surfaces. Tibshirani proposed the Lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, and projection pursuit.
application/pdf
09年新书,很好的知无线电 网络中的频谱接入和管理,下面是IEEE的书评: The book is divided into three parts. Part one is a general introduction to wire- less communication systems, reviewing communication architectures and tech- nologies, as well as resource allocation protocols and dynamic spectrum access, discussing features, research challenges, and standardization. Part two is a further discussion on wireless system design with a focus on analysis of dynamic spectrum access systems. A brief introduction to signal processing and optimization tech- niques is presented, as well as basics of game theory and intelligent algorithms (e.g., machine learning, genetic algo- rithms, and fuzzy logic). Finally, part three discusses in detail dynamic spec- trum access and management. Models and architectures of dynamic spectrum access are introduced and described in detail. The authors first present the cen- tralized dynamic spectrum access model, and later focus on the distributed approach. Distributed dynamic spectrum access is discussed from the algorithmic and protocol perspectives in separate chapters. Finally, a spectrum trading model is presented with its applications to wireless communications. This book is a valuable source of information for people new to the con- cept of dynamic spectrum access. Also, scientists and engineers already involved in dynamic spectrum access research will find this book a good reference source. This is one of the few books on the mar- ket related to dynamic spectrum access and cognitive radio written completely by the authors themselves. Therefore, it is very cohesive, has a very good flow, and does not repeat itself while intro- ducing new concepts, as do many edited books on a similar topic available on the market. Many concepts of dynamic spec- trum access are well systematized in the book, and the literature review is very broad and complete. One small draw- back is a bit too lengthy introduction to wireless communication systems in part two of the book (which can e

最新推荐

HomePlug_GP_Spec_v1.1.1

家庭电力线通信网络 Broad Power Line communication standard,Green PHY

NXP TEF668X TEF6686 Full Datasheet 的完整数据手册

extend NXP Semiconductors broad, industry-proven car radio single tuner portfolio, offering outstanding radio performance with the widest range of features and state of the art software algorithms at ...

linux系统ioctl使用示例

程序1:检测接口的 inet_addr,netmask,broad_addr 程序2:检查接口的物理连接是否正常 程序3:更简单一点测试物理连接 程序4:调节音量

基于VHDL的乒乓游戏机的设计

The face covering is broad, flexibility high and have the very good pragmatism. One main body of the book is designed waits for what part group is accomplished owing to that VHDL table tennis game ...

OASIS的SOA参考模型.doc

While service-orientation may be a popular concept found in a broad variety of applications, this reference model focuses on the field of software architecture. The concepts and relationships ...

代码随想录最新第三版-最强八股文

这份PDF就是最强⼋股⽂! 1. C++ C++基础、C++ STL、C++泛型编程、C++11新特性、《Effective STL》 2. Java Java基础、Java内存模型、Java面向对象、Java集合体系、接口、Lambda表达式、类加载机制、内部类、代理类、Java并发、JVM、Java后端编译、Spring 3. Go defer底层原理、goroutine、select实现机制 4. 算法学习 数组、链表、回溯算法、贪心算法、动态规划、二叉树、排序算法、数据结构 5. 计算机基础 操作系统、数据库、计算机网络、设计模式、Linux、计算机系统 6. 前端学习 浏览器、JavaScript、CSS、HTML、React、VUE 7. 面经分享 字节、美团Java面、百度、京东、暑期实习...... 8. 编程常识 9. 问答精华 10.总结与经验分享 ......

基于交叉模态对应的可见-红外人脸识别及其表现评估

12046通过调整学习:基于交叉模态对应的可见-红外人脸识别Hyunjong Park*Sanghoon Lee*Junghyup Lee Bumsub Ham†延世大学电气与电子工程学院https://cvlab.yonsei.ac.kr/projects/LbA摘要我们解决的问题,可见光红外人重新识别(VI-reID),即,检索一组人的图像,由可见光或红外摄像机,在交叉模态设置。VI-reID中的两个主要挑战是跨人图像的类内变化,以及可见光和红外图像之间的跨模态假设人图像被粗略地对准,先前的方法尝试学习在不同模态上是有区别的和可概括的粗略的图像或刚性的部分级人表示然而,通常由现成的对象检测器裁剪的人物图像不一定是良好对准的,这分散了辨别性人物表示学习。在本文中,我们介绍了一种新的特征学习框架,以统一的方式解决这些问题。为此,我们建议利用密集的对应关系之间的跨模态的人的形象,年龄。这允许解决像素级中�

javascript 中字符串 变量

在 JavaScript 中,字符串变量可以通过以下方式进行定义和赋值: ```javascript // 使用单引号定义字符串变量 var str1 = 'Hello, world!'; // 使用双引号定义字符串变量 var str2 = "Hello, world!"; // 可以使用反斜杠转义特殊字符 var str3 = "It's a \"nice\" day."; // 可以使用模板字符串,使用反引号定义 var str4 = `Hello, ${name}!`; // 可以使用 String() 函数进行类型转换 var str5 = String(123); //

数据结构1800试题.pdf

你还在苦苦寻找数据结构的题目吗?这里刚刚上传了一份数据结构共1800道试题,轻松解决期末挂科的难题。不信?你下载看看,这里是纯题目,你下载了再来私信我答案。按数据结构教材分章节,每一章节都有选择题、或有判断题、填空题、算法设计题及应用题,题型丰富多样,共五种类型题目。本学期已过去一半,相信你数据结构叶已经学得差不多了,是时候拿题来练练手了,如果你考研,更需要这份1800道题来巩固自己的基础及攻克重点难点。现在下载,不早不晚,越往后拖,越到后面,你身边的人就越卷,甚至卷得达到你无法想象的程度。我也是曾经遇到过这样的人,学习,练题,就要趁现在,不然到时你都不知道要刷数据结构题好还是高数、工数、大英,或是算法题?学完理论要及时巩固知识内容才是王道!记住!!!下载了来要答案(v:zywcv1220)。

通用跨域检索的泛化能力

12056通用跨域检索:跨类和跨域的泛化2* Soka Soka酒店,Soka-马上预订;1印度理工学院,Kharagpur,2印度科学学院,班加罗尔soumava2016@gmail.com,{titird,somabiswas} @ iisc.ac.in摘要在这项工作中,我们第一次解决了通用跨域检索的问题,其中测试数据可以属于在训练过程中看不到的类或域。由于动态增加的类别数量和对每个可能的域的训练的实际约束,这需要大量的数据,所以对看不见的类别和域的泛化是重要的。为了实现这一目标,我们提出了SnMpNet(语义Neighbourhood和混合预测网络),它包括两个新的损失,以占在测试过程中遇到的看不见的类和域。具体来说,我们引入了一种新的语义邻域损失,以弥合可见和不可见类之间的知识差距,并确保潜在的空间嵌入的不可见类是语义上有意义的,相对于其相邻的类。我们还在图像级以及数据的语义级引入了基于混�