如何在GAN网络中加入门控循环跳跃连接 代码
时间: 2024-05-14 11:15:23 浏览: 126
门控循环跳跃连接(Gated Recurrent Skip Connection,GRSC)是一种在生成对抗网络(GAN)中引入循环结构的方法。GRSC 可以让 GAN 学习到更长的时间依赖性和更好的生成图像效果。
以下是一个简单的示例代码,展示如何在GAN网络中加入门控循环跳跃连接:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class GANGenerator(nn.Module):
def __init__(self, z_dim, image_size, hidden_dim):
super(GANGenerator, self).__init__()
self.z_dim = z_dim
self.image_size = image_size
self.hidden_dim = hidden_dim
self.fc1 = nn.Linear(z_dim, hidden_dim)
self.gru1 = nn.GRU(hidden_dim, hidden_dim, batch_first=True)
self.gru2 = nn.GRU(hidden_dim, hidden_dim, batch_first=True)
self.fc2 = nn.Linear(hidden_dim, image_size**2)
self.grsc = nn.Linear(hidden_dim, hidden_dim)
def forward(self, z):
batch_size = z.size(0)
h = torch.zeros(1, batch_size, self.hidden_dim).to(z.device)
# First Gated Recurrent Skip Connection
z = self.fc1(z)
z, h = self.gru1(z.unsqueeze(1), h)
z = F.relu(z)
z = z.squeeze(1)
h = self.grsc(h)
z = torch.sigmoid(z + h)
# Second Gated Recurrent Skip Connection
z, h = self.gru2(z.unsqueeze(1), h)
z = F.relu(z)
z = z.squeeze(1)
h = self.grsc(h)
z = torch.sigmoid(z + h)
z = self.fc2(z)
z = torch.tanh(z)
z = z.view(batch_size, 1, self.image_size, self.image_size)
return z
class GANGenerator(nn.Module):
def __init__(self, z_dim, image_size, hidden_dim):
super(GANGenerator, self).__init__()
self.z_dim = z_dim
self.image_size = image_size
self.hidden_dim = hidden_dim
self.fc1 = nn.Linear(z_dim, hidden_dim)
self.grsc1 = nn.Linear(hidden_dim, hidden_dim)
self.gru1 = nn.GRU(hidden_dim, hidden_dim, batch_first=True)
self.grsc2 = nn.Linear(hidden_dim, hidden_dim)
self.gru2 = nn.GRU(hidden_dim, hidden_dim, batch_first=True)
self.fc2 = nn.Linear(hidden_dim, image_size**2)
def forward(self, z):
batch_size = z.size(0)
h = torch.zeros(1, batch_size, self.hidden_dim).to(z.device)
# First Gated Recurrent Skip Connection
z = self.fc1(z)
h1 = self.grsc1(h)
z1, h = self.gru1(z.unsqueeze(1), h)
z1 = F.relu(z1)
z1 = z1.squeeze(1)
z1 = torch.sigmoid(z1 + h1)
# Second Gated Recurrent Skip Connection
h2 = self.grsc2(h)
z2, h = self.gru2(z1.unsqueeze(1), h)
z2 = F.relu(z2)
z2 = z2.squeeze(1)
z2 = torch.sigmoid(z2 + h2)
z2 = self.fc2(z2)
z2 = torch.tanh(z2)
z2 = z2.view(batch_size, 1, self.image_size, self.image_size)
return z2
```
在上面的代码中,我们定义了两个 GAN 生成器类:GANGenerator 和 GANGenerator。GANGenerator 是一个不包含门控循环跳跃连接的基本 GAN 生成器,而 GANGenerator 是一个包含门控循环跳跃连接的 GAN 生成器。
在 GANGenerator 中,我们在第一层 GRU 和第二层 GRU 之间添加了门控循环跳跃连接,以增加 GAN 对时间序列数据的学习能力。具体来说,我们在每个 GRU 的输出上应用了一个门控线性变换,将其与 GRU 的输出相加,并通过 sigmoid 函数进行激活,以产生门控循环跳跃连接的输出。
注意,在代码中,我们使用了 PyTorch 中的 nn.Module 和 nn.GRU 等模块,因此在使用此代码时需要先导入 PyTorch 库。
阅读全文