stm32F4定时器触发双adc同步采样和DMA转运库函数配置代码
时间: 2023-08-29 13:06:30 浏览: 239
ADC1多通道DMA--软件触发.rar_ADC1多通道DMA--软件触发_基于STM32的_数据采集 触发
以下是一个示例代码,用于配置 STM32F4 的定时器触发双 ADC 同步采样和 DMA 转运的库函数配置:
```c
#include "stm32f4xx.h"
#define ADC1_DR_ADDRESS ((uint32_t)0x4001204C)
#define ADC2_DR_ADDRESS ((uint32_t)0x4001214C)
#define ADC_BUFFER_SIZE 1024
uint16_t adc_buffer1[ADC_BUFFER_SIZE];
uint16_t adc_buffer2[ADC_BUFFER_SIZE];
void ADC_DMA_Config(void)
{
ADC_InitTypeDef ADC_InitStructure;
DMA_InitTypeDef DMA_InitStructure;
NVIC_InitTypeDef NVIC_InitStructure;
// 使能 ADC1 和 ADC2 的时钟
RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1 | RCC_APB2Periph_ADC2, ENABLE);
// 配置 ADC1 和 ADC2 的通用设置
ADC_InitStructure.ADC_Mode = ADC_Mode_Independent;
ADC_InitStructure.ADC_ScanConvMode = DISABLE;
ADC_InitStructure.ADC_ContinuousConvMode = DISABLE;
ADC_InitStructure.ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_Rising;
ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;
ADC_InitStructure.ADC_NbrOfConversion = 1;
ADC_Init(ADC1, &ADC_InitStructure);
ADC_Init(ADC2, &ADC_InitStructure);
// 配置 ADC1 和 ADC2 的规则通道
ADC_RegularChannelConfig(ADC1, ADC_Channel_0, 1, ADC_SampleTime_3Cycles);
ADC_RegularChannelConfig(ADC2, ADC_Channel_0, 1, ADC_SampleTime_3Cycles);
// 配置 DMA1 的时钟
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_DMA1, ENABLE);
// 配置 DMA1_Stream0,用于 ADC1 的数据转移
DMA_InitStructure.DMA_Channel = DMA_Channel_0;
DMA_InitStructure.DMA_PeripheralBaseAddr = ADC1_DR_ADDRESS;
DMA_InitStructure.DMA_Memory0BaseAddr = (uint32_t)&adc_buffer1;
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralToMemory;
DMA_InitStructure.DMA_BufferSize = ADC_BUFFER_SIZE;
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord;
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;
DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;
DMA_InitStructure.DMA_Priority = DMA_Priority_High;
DMA_InitStructure.DMA_FIFOMode = DMA_FIFOMode_Disable;
DMA_InitStructure.DMA_FIFOThreshold = DMA_FIFOThreshold_HalfFull;
DMA_InitStructure.DMA_MemoryBurst = DMA_MemoryBurst_Single;
DMA_InitStructure.DMA_PeripheralBurst = DMA_PeripheralBurst_Single;
DMA_Init(DMA1_Stream0, &DMA_InitStructure);
// 配置 DMA2_Stream0,用于 ADC2 的数据转移
DMA_InitStructure.DMA_Channel = DMA_Channel_1;
DMA_InitStructure.DMA_PeripheralBaseAddr = ADC2_DR_ADDRESS;
DMA_InitStructure.DMA_Memory0BaseAddr = (uint32_t)&adc_buffer2;
DMA_Init(DMA1_Stream0, &DMA_InitStructure);
// 配置定时器触发 ADC1 和 ADC2
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);
TIM_DeInit(TIM2);
TIM_TimeBaseStructure.TIM_Period = 1000 - 1; // 定时器溢出时间
TIM_TimeBaseStructure.TIM_Prescaler = (84 - 1); // 定时器预分频系数
TIM_TimeBaseStructure.TIM_ClockDivision = 0;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure);
// 配置 ADC1 和 ADC2 的外部触发源为定时器触发
ADC_ExternalTrigConvCmd(ADC1, ENABLE);
ADC_ExternalTrigConvCmd(ADC2, ENABLE);
ADC_ExternalTrigConvEdgeConfig(ADC1, ADC_ExternalTrigConvEdge_Rising);
ADC_ExternalTrigConvEdgeConfig(ADC2, ADC_ExternalTrigConvEdge_Rising);
// 配置 DMA1_Stream0 和 DMA2_Stream0 的传输完成中断
NVIC_InitStructure.NVIC_IRQChannel = DMA1_Stream0_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
// 使能 DMA1_Stream0 和 DMA2_Stream0 的传输完成中断
DMA_ITConfig(DMA1_Stream0, DMA_IT_TC, ENABLE);
DMA_ITConfig(DMA2_Stream0, DMA_IT_TC, ENABLE);
// 启动 DMA1_Stream0 和 DMA2_Stream0
DMA_Cmd(DMA1_Stream0, ENABLE);
DMA_Cmd(DMA2_Stream0, ENABLE);
// 启动定时器
TIM_Cmd(TIM2, ENABLE);
// 启动 ADC1 和 ADC2 的转换
ADC_Cmd(ADC1, ENABLE);
ADC_Cmd(ADC2, ENABLE);
// 启动 ADC1 和 ADC2 的 DMA 传输
ADC_DMARequestAfterLastTransferCmd(ADC1, ENABLE);
ADC_DMARequestAfterLastTransferCmd(ADC2, ENABLE);
ADC_DMACmd(ADC1, ENABLE);
ADC_DMACmd(ADC2, ENABLE);
}
void DMA1_Stream0_IRQHandler(void)
{
if (DMA_GetITStatus(DMA1_Stream0, DMA_IT_TCIF0))
{
// 处理 DMA1_Stream0 的传输完成中断
DMA_ClearITPendingBit(DMA1_Stream0, DMA_IT_TCIF0);
}
}
void DMA2_Stream0_IRQHandler(void)
{
if (DMA_GetITStatus(DMA2_Stream0, DMA_IT_TCIF0))
{
// 处理 DMA2_Stream0 的传输完成中断
DMA_ClearITPendingBit(DMA2_Stream0, DMA_IT_TCIF0);
}
}
int main(void)
{
ADC_DMA_Config();
while (1)
{
// 等待 ADC 转换完成
while (DMA_GetFlagStatus(DMA1_Stream0, DMA_FLAG_TCIF0) == RESET)
{
}
// 处理 ADC 数据
for (int i = 0; i < ADC_BUFFER_SIZE; i++)
{
printf("ADC1: %d, ADC2: %d\n", adc_buffer1[i], adc_buffer2[i]);
}
// 清除标志位
DMA_ClearFlag(DMA1_Stream0, DMA_FLAG_TCIF0);
}
}
```
这段代码配置了 ADC1 和 ADC2 以及相关的 DMA 和定时器,当 DMA 的转换完成中断触发时,可以处理 ADC 数据。你可以根据自己的需要进行修改和扩展。注意,这只是一个示例代码,可能需要根据你的具体硬件和需求进行调整。
阅读全文