基于粒子群算法的机械臂“3-5-3”时间轨迹优化matlab代码
时间: 2024-02-19 09:57:58 浏览: 98
以下是一个基于粒子群算法的机械臂“3-5-3”时间轨迹优化的 Matlab 代码示例:
```matlab
% 定义机械臂轨迹优化问题的参数
num_particles = 50; % 粒子数
max_iterations = 100; % 最大迭代次数
c1 = 2; % 自我认知常数
c2 = 2; % 社会认知常数
w = 0.7; % 惯性权重
max_velocity = 5; % 最大速度
max_acceleration = 5; % 最大加速度
num_joints = 3; % 关节数
num_waypoints = 5; % 轨迹中路点数
% 定义机械臂运动学模型和运动控制器
function pose = forward_kinematics(q)
% 计算机械臂末端位姿
% ...
end
function q = inverse_kinematics(pose)
% 计算机械臂关节角度
% ...
end
function [q, qd, qdd] = motion_controller(q, qd, qdd)
% 控制机械臂关节运动
% ...
end
% 定义适应度函数
function fitness_value = fitness_function(q_traj)
% 计算机械臂轨迹的总时间
% ...
end
% 初始化粒子群和全局最优解
particles = zeros(num_particles, num_joints, num_waypoints);
velocities = zeros(num_particles, num_joints, num_waypoints);
best_positions = particles;
best_fitness_values = ones(num_particles, 1) * inf;
global_best_position = zeros(num_joints, num_waypoints);
global_best_fitness_value = inf;
% 初始化粒子群和全局最优解的位置和速度
for i = 1:num_particles
for j = 1:num_joints
for k = 1:num_waypoints
particles(i, j, k) = randn(-pi, pi);
velocities(i, j, k) = randn(-max_velocity, max_velocity);
end
end
fitness_value = fitness_function(particles(i, :, :));
if fitness_value < best_fitness_values(i)
best_positions(i, :, :) = particles(i, :, :);
best_fitness_values(i) = fitness_value;
end
if fitness_value < global_best_fitness_value
global_best_position = particles(i, :, :);
global_best_fitness_value = fitness_value;
end
end
% 迭代更新粒子群的位置和速度
for iter = 1:max_iterations
for i = 1:num_particles
% 更新速度
velocities(i, :, :) = w * velocities(i, :, :) ...
+ c1 * randn() * (best_positions(i, :, :) - particles(i, :, :)) ...
+ c2 * randn() * (global_best_position - particles(i, :, :));
velocities(i, :, :) = max(min(velocities(i, :, :), max_velocity), -max_velocity);
% 更新位置
particles(i, :, :) = particles(i, :, :) + velocities(i, :, :);
particles(i, :, :) = max(min(particles(i, :, :), pi), -pi);
% 计算适应度值
fitness_value = fitness_function(particles(i, :, :));
% 更新个体最优解和全局最优解
if fitness_value < best_fitness_values(i)
best_positions(i, :, :) = particles(i, :, :);
best_fitness_values(i) = fitness_value;
end
if fitness_value < global_best_fitness_value
global_best_position = particles(i, :, :);
global_best_fitness_value = fitness_value;
end
end
end
% 输出最优解
q_traj = reshape(global_best_position, num_joints, num_waypoints);
disp('Optimal trajectory:');
disp(q_traj);
```
需要根据具体的机械臂运动学模型和运动控制器来实现 `forward_kinematics`、`inverse_kinematics` 和 `motion_controller` 函数,并根据具体的优化问题来实现 `fitness_function` 函数。
阅读全文