net_data=data1.query('Country=="Netherlands" and Quantity>0').groupby(data1['InvoiceDate'].dt.strftime('%Y-%m'))['Price'].sum().reset_index() eire_data=data1.query('Country=="EIRE" and Quantity>0').groupby(data1['InvoiceDate'].dt.strftime('%Y-%m'))['Price'].sum().reset_index()怎么生成柱状图对比
时间: 2023-09-02 15:06:24 浏览: 128
PyPI 官网下载 | sepa_netherlands-0.2.6.tar.gz
要生成柱状图对比,您可以使用matplotlib库来绘制图表。以下是一个示例代码:
```python
import pandas as pd
import matplotlib.pyplot as plt
# 读取数据
data1 = pd.read_csv('your_file_path.csv')
# 将InvoiceDate列转换为日期类型
data1['InvoiceDate'] = pd.to_datetime(data1['InvoiceDate'])
# 提取Netherlands和EIRE的销售数据
net_data = data1.query('Country=="Netherlands" and Quantity>0').groupby(data1['InvoiceDate'].dt.strftime('%Y-%m'))['Price'].sum().reset_index()
eire_data = data1.query('Country=="EIRE" and Quantity>0').groupby(data1['InvoiceDate'].dt.strftime('%Y-%m'))['Price'].sum().reset_index()
# 绘制柱状图
plt.bar(net_data['InvoiceDate'], net_data['Price'], label='Netherlands')
plt.bar(eire_data['InvoiceDate'], eire_data['Price'], label='EIRE')
# 添加图表标题和标签
plt.title('Sales Comparison between Netherlands and EIRE')
plt.xlabel('Year-Month')
plt.ylabel('Sales')
plt.legend()
# 显示图表
plt.show()
```
在上面的代码中,您需要将'your_file_path.csv'替换为您的数据文件路径。然后,使用`pd.read_csv()`函数读取数据,并使用`pd.to_datetime()`方法将InvoiceDate列转换为日期类型。接下来,使用`.query()`方法和`.groupby()`方法提取Netherlands和EIRE的销售数据,并使用`.reset_index()`方法重置索引以便于绘制图表。然后,使用`plt.bar()`函数绘制柱状图,并使用`plt.title()`、`plt.xlabel()`、`plt.ylabel()`和`plt.legend()`函数添加图表标题、标签和图例。最后,使用`plt.show()`函数显示图表。
请注意,如果您的数据文件中没有Netherlands和EIRE的数据,您需要根据实际情况修改代码中的查询条件。另外,您可以根据需要修改图表的样式和布局。
阅读全文