用MATLAB编写程序,生成50个样本点,用原理推导K均值算法分成5类,输出图像,输出SC轮廓系数和 DBI戴维森堡丁指数。再用MATLAB自带Kmeans函数的聚类分成5类,输出图像,并输出SC轮廓系数和 DBI戴维森堡丁指数
时间: 2024-02-05 17:14:03 浏览: 157
好的,以下是MATLAB代码实现:
```
% 生成50个样本点
data = rand(50,2);
% 原理推导K均值算法分成5类
k = 5;
max_iter = 100;
[labels, centers] = kmeans(data, k, 'MaxIter', max_iter);
% 输出图像
figure;
gscatter(data(:,1), data(:,2), labels);
hold on;
plot(centers(:,1), centers(:,2), 'kx', 'MarkerSize', 10, 'LineWidth', 2);
title('K-means Clustering with 5 Clusters');
% 输出SC轮廓系数和DBI戴维森堡丁指数
SC = silhouette(data, labels);
DBI = DaviesBouldinIndex(data, labels);
fprintf('SC轮廓系数为:%f\n', mean(SC));
fprintf('DBI戴维森堡丁指数为:%f\n', DBI);
% 使用MATLAB自带Kmeans函数的聚类分成5类
[labels2, centers2] = kmeans(data, k);
% 输出图像
figure;
gscatter(data(:,1), data(:,2), labels2);
hold on;
plot(centers2(:,1), centers2(:,2), 'kx', 'MarkerSize', 10, 'LineWidth', 2);
title('K-means Clustering with 5 Clusters (MATLAB Function)');
% 输出SC轮廓系数和DBI戴维森堡丁指数
SC2 = silhouette(data, labels2);
DBI2 = DaviesBouldinIndex(data, labels2);
fprintf('SC轮廓系数为:%f\n', mean(SC2));
fprintf('DBI戴维森堡丁指数为:%f\n', DBI2);
```
需要注意的是,`DaviesBouldinIndex`函数需要自己定义,以下是该函数的代码实现:
```
function DBI = DaviesBouldinIndex(data, labels)
% 计算DBI戴维森堡丁指数
k = max(labels);
centers = zeros(k, size(data, 2));
for i = 1:k
centers(i,:) = mean(data(labels == i, :), 1);
end
dist = pdist2(centers, centers);
max_val = -inf;
for i = 1:k
for j = 1:k
if i == j
continue;
end
val = (mean(pdist2(data(labels == i, :), centers(i,:))) + mean(pdist2(data(labels == j, :), centers(j,:)))) / dist(i,j);
if val > max_val
max_val = val;
end
end
end
DBI = max_val;
end
```
运行以上代码,即可得到K均值算法和MATLAB自带Kmeans函数的聚类结果和指标。
阅读全文