用MATLAB实现Kmeans算法求DBI戴维森堡丁指数的代码和解释
时间: 2023-11-27 16:54:34 浏览: 321
kmeans聚类算法matlab代码.zip
以下是MATLAB实现Kmeans算法求DBI戴维森堡丁指数的代码和解释:
```matlab
% 数据集
data = [...];
% Kmeans聚类
[idx, centers] = kmeans(data, k);
% 计算每个簇的距离
dist = pdist2(data, centers);
% 计算每个簇的平均距离
avg_dist = zeros(k, 1);
for i = 1:k
avg_dist(i) = mean(dist(idx == i, i));
end
% 计算簇内距离
intra_dist = zeros(k, 1);
for i = 1:k
intra_dist(i) = sum(pdist2(data(idx == i, :), centers(i, :)));
end
% 计算戴维森堡丁指数
dbi = 0;
for i = 1:k
max_val = -Inf;
for j = 1:k
if i ~= j
val = (avg_dist(i) + avg_dist(j)) / intra_dist(i,j);
if val > max_val
max_val = val;
end
end
end
dbi = dbi + max_val;
end
dbi = dbi / k;
```
解释:
1. 首先定义数据集。
2. 调用MATLAB自带的Kmeans函数进行聚类,得到每个数据点的簇标签和每个簇的中心点。
3. 计算每个簇内每个数据点到该簇中心的距离,存储在dist矩阵中。
4. 计算每个簇内所有数据点到该簇中心的平均距离,存储在avg_dist向量中。
5. 计算每个簇内所有数据点之间的距离之和,存储在intra_dist向量中。
6. 计算戴维森堡丁指数:对于每个簇i,计算它与其他簇j之间的距离,选取最大值作为分母,将它与簇内平均距离之和作为分子,将所有簇的结果求和并除以簇的个数得到DBI指数。
注意:上述代码中的k代表簇的个数,需要根据具体问题进行设置。
阅读全文