stc1299秒数码管倒计时带573锁存器代码

时间: 2023-09-03 08:25:26 浏览: 45
### 回答1: 以下是基于STC12C5A60S2单片机的秒数码管倒计时带573锁存器的代码示例: ``` #include <STC12C5A60S2.h> #define uchar unsigned char #define uint unsigned int sbit LATCH = P2^0; // 锁存器控制引脚 sbit DIO = P2^1; // 数据引脚 sbit CLK = P2^2; // 时钟引脚 uchar code LED_DuanMa[] = { // 数码管段码表 0x3F, 0x06, 0x5B, 0x4F, 0x66, 0x6D, 0x7D, 0x07, 0x7F, 0x6F, 0x77, 0x7C, 0x39, 0x5E, 0x79, 0x71 }; void delay(uint t) // 延时函数 { uint i, j; for (i = t; i > 0; i--) { for (j = 110; j > 0; j--); } } void HC595_SendData(uchar dat) // 向74HC573发送数据 { uchar i; for (i = 0; i < 8; i++) { CLK = 0; DIO = (dat & 0x80) >> 7; dat <<= 1; CLK = 1; } } void Display(uchar *p) // 在数码管上显示数字 { HC595_SendData(~0x01); // 先清除锁存器输出 LATCH = 0; LATCH = 1; HC595_SendData(LED_DuanMa[*p]); // 显示个位 LATCH = 0; LATCH = 1; HC595_SendData(LED_DuanMa[*(p + 1)]); // 显示十位 LATCH = 0; LATCH = 1; HC595_SendData(LED_DuanMa[*(p + 2)]); // 显示百位 LATCH = 0; LATCH = 1; HC595_SendData(~0x80); // 输出锁存信号 LATCH = 0; LATCH = 1; HC595_SendData(LED_DuanMa[*(p + 3)]); // 显示千位 LATCH = 0; LATCH = 1; } void main() { uchar time[4] = {9, 5, 5, 9}; // 初始时间为 95:59 uint count = 0; while (1) { Display(time); // 显示当前时间 delay(1000); // 延时1秒 if (++count >= 1000) { // 经过1秒 count = 0; if (--time[0] == 0xFF) { // 秒数减1 time[0] = 9; if (--time[1] == 0xFF) { // 十位秒数减1 time[1] = 5; if (--time[2] == 0xFF) { // 分钟数减1 time[2] = 9; if (--time[3] == 0xFF) { // 小时数减1 time[3] = 9; } } } } } } } ``` 与前面的代码示例相比,本代码加入了74HC573芯片作为锁存器,可以确保计时器的精度,并且可以实现秒数码管的倒计时。在计时过程中,可以通过 `time` 数组来设置和获取当前时间值。通过修改 `delay` 函数中的参数值可以调整计时器的计时间隔。需要注意的是,由于74HC573的锁存信号是高电平有效,因此在输出锁存信号时需要向芯片发送 `~0x80` 的数据,即取反后最高位为0,其余位为1的数据。 ### 回答2: STC1299是一款常见的单片机,秒数码管倒计时带573锁存器是一种常见的倒计时电路。在这种电路中,通过STC1299控制573锁存器,实现倒计时的功能。 代码的实现步骤如下: 1. 首先,需要定义和初始化倒计时所需的相关变量,比如秒、分钟、小时等。 2. 设置STC1299的引脚连接。将STC1299的输出引脚与573锁存器的数据引脚相连,将STC1299的控制引脚与CLK和STB引脚相连。 3. 编写程序的主循环。在循环中,通过STC1299的控制引脚产生时钟信号,使得573锁存器逐位接收STC1299的输出,并将其存储。这样可以实现对倒计时数据的更新和显示。 4. 在循环中,通过STC1299的控制引脚产生时钟信号的频率来控制倒计时的速度。可以通过改变时钟信号的频率,实现倒计时速度的调整。 5. 当倒计时结束时,可以通过编写相应的程序逻辑,实现相应的处理。比如,可以发出蜂鸣器的声音或者改变LED灯的状态,以提醒倒计时结束。 通过以上步骤,就可以实现使用STC1299控制573锁存器的倒计时功能。具体的代码和电路连接方式需要根据具体的情况进行设计和调整。 ### 回答3: STC1299是一款单片机芯片,能够通过编程实现秒数码管的倒计时功能,并带有573锁存器。下面是一个简单的代码实现: 首先,我们需要引入STC1299的相关头文件和寄存器定义: #include <stc/stc12c5a60s2.h> 接下来,我们需要定义一些变量和常量: sbit digit1 = P2^0; // 数码管第一位 sbit digit2 = P2^1; // 数码管第二位 sbit digit3 = P2^2; // 数码管第三位 sbit digit4 = P2^3; // 数码管第四位 sbit latch = P1^2; // 573锁存器控制引脚 unsigned char display[4]; // 存储数码管数字的数组 unsigned char count = 60; // 倒计时初始值 然后,我们需要编写一个倒计时函数: void countdown() { while(count > 0) { // 数字转换为7段数码管对应的编码 display[0] = count / 10; display[1] = count % 10; // 依次显示每一位数字 digit1 = 1; P0 = display[0]; digit1 = 0; digit2 = 1; P0 = display[1]; digit2 = 0; // 延时一秒 delay(1000); // 倒计时减一 count--; } } 最后,在主函数中调用倒计时函数即可实现倒计时功能: void main() { // 初始化 latch = 0; // 循环进行倒计时 while(1) { countdown(); } } 以上就是简单的STC1299秒数码管倒计时带573锁存器的代码示例。通过这段代码,可以实现将倒计时从60秒开始逐渐减少,并在数码管上显示。

相关推荐

最新推荐

基于STC单片机的智能LED路灯控制器设计

为了充分节约能源,提高路灯控制系统的智能化,介绍了一种基于STC 单片机的智能LED 路灯控制器,引入在线监测、PWM 和电力线载波通信技术,实践应用效果良好,具有成本低、运行稳定的特点。本控制器对智能化路灯管理...

基于STC89C51单片机的出租车计费器设计

本文以单片机STC89C51 为核心设计一款出租车计费器, 使能够实现里程及对应价格的显示,由于采用芯片的自动定时计数,所以能够准确的计算出总的行车里程并能转换成对应的价格来,这样能够避免出租车司机作弊的可能性...

STC8H8K64U原理图(上)

STC8H8K64U原理图(上)

MIL_STD_1364J.537.pdf

MIL_STD_1364J.537.pdf

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

粒子群多目标算法matlab代码【MATLAB代码实现】定义优化问题参数

# 1. 粒子群多目标算法简介 ## 1.1 什么是粒子群算法? 粒子群算法是一种基于群体智能的优化算法,灵感来源于鸟群或鱼群等生物群体的行为。每个“粒子”代表问题空间中的一个候选解,而整个粒子群代表了候选解的一个群体。粒子在解空间中搜索最优解,通过个体的经验和群体的协作来不断调整自身位置和速度,从而逐步靠近最优解。 ## 1.2 粒子群算法在多目标优化中的应用 粒子群算法最初是针对单目标优化问题提出的,但后来被扩展应用到了多目标优化领域。与单目标优化不同,多目标优化需要考虑多个冲突的目标函数,因此粒子群算法的应用在多目标优化中具有一定的挑战性。 ## 1.3 粒子群多目标算法原理解

hbase中时间戳的精确度和hbase中列族和列名的分隔符是什么

我已经回答了关于HBase中时间戳的精确度的问题,现在回答你的第二个问题: 在HBase中,列族和列名的分隔符是冒号(:)。例如,如果你有一个列族为“info”,列名为“name”的列,那么在HBase中的完整列名将是“info:name”。这个分隔符是在HBase的设计中被硬编码的,不能更改。这个分隔符在HBase的API中也得到了体现,例如在Java API中,可以使用“:`”来将列族和列名分隔开来,如下所示: ```java Get get = new Get(Bytes.toBytes("rowkey")); get.addColumn(Bytes.toBytes("info"),

spring boot应用启动原理分析.docx

spring boot应用启动原理分析.docxspring boot应用启动原理分析.docxspring boot应用启动原理分析.docxspring boot应用启动原理分析.docxspring boot应用启动原理分析.docxspring boot应用启动原理分析.docxspring boot应用启动原理分析.docxspring boot应用启动原理分析.docx

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依

粒子群多目标算法matlab代码【算法实现步骤】计算适应度函数

# 1. 粒子群多目标算法简介 ## 1.1 粒子群多目标算法概述 在多目标优化问题中,粒子群多目标算法是一种常用的元启发式优化算法。它借鉴了鸟群觅食的行为,通过不断调整粒子的位置和速度来搜索最优解空间。相比于传统的单目标优化算法,粒子群多目标算法能够有效解决多目标优化问题。 ## 1.2 算法原理与特点 粒子群多目标算法的核心原理是通过模拟群体中粒子的运动,不断更新粒子的位置和速度,以达到最优解。其特点包括易于实现、收敛速度快、对参数不敏感等。 ## 1.3 相关研究现状分析 目前,粒子群多目标算法在多目标优化领域得到了广泛应用,并在不同领域取得了一定的成果。研究者们也在不断探索