1d-cnn如何做测试集无标签数据预测,请写出pytorch代码
时间: 2024-02-22 10:56:58 浏览: 104
pytorch测试代码
对于1D-CNN,可以通过以下步骤对测试集无标签数据进行预测:
1. 加载已训练好的模型
```python
import torch.nn as nn
import torch.optim as optim
import torch.utils.data as Data
# 定义1D-CNN模型
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
self.conv1 = nn.Sequential(
nn.Conv1d(
in_channels=1, # 输入通道数
out_channels=16, # 输出通道数
kernel_size=5, # 卷积核大小
stride=1, # 步长
padding=2, # 填充
),
nn.ReLU(),
nn.MaxPool1d(kernel_size=2),
)
self.conv2 = nn.Sequential(
nn.Conv1d(16, 32, 5, 1, 2),
nn.ReLU(),
nn.MaxPool1d(2),
)
self.out = nn.Linear(32 * 25, 2) # 全连接层
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = x.view(x.size(0), -1)
output = self.out(x)
return output
# 加载模型
model = CNN()
model.load_state_dict(torch.load('model.pth'))
```
2. 加载测试集数据
```python
# 加载测试集数据
test_data = torch.from_numpy(test_data_np).float()
test_loader = Data.DataLoader(test_data, batch_size=batch_size, shuffle=False)
```
3. 预测无标签数据
```python
# 预测无标签数据
model.eval()
preds = []
with torch.no_grad():
for x_test in test_loader:
outputs = model(x_test)
_, predicted = torch.max(outputs.data, 1)
preds.extend(predicted.numpy().tolist())
```
完整代码如下:
```python
import torch.nn as nn
import torch.optim as optim
import torch.utils.data as Data
# 定义1D-CNN模型
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
self.conv1 = nn.Sequential(
nn.Conv1d(
in_channels=1, # 输入通道数
out_channels=16, # 输出通道数
kernel_size=5, # 卷积核大小
stride=1, # 步长
padding=2, # 填充
),
nn.ReLU(),
nn.MaxPool1d(kernel_size=2),
)
self.conv2 = nn.Sequential(
nn.Conv1d(16, 32, 5, 1, 2),
nn.ReLU(),
nn.MaxPool1d(2),
)
self.out = nn.Linear(32 * 25, 2) # 全连接层
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = x.view(x.size(0), -1)
output = self.out(x)
return output
# 加载模型
model = CNN()
model.load_state_dict(torch.load('model.pth'))
# 加载测试集数据
test_data = torch.from_numpy(test_data_np).float()
test_loader = Data.DataLoader(test_data, batch_size=batch_size, shuffle=False)
# 预测无标签数据
model.eval()
preds = []
with torch.no_grad():
for x_test in test_loader:
outputs = model(x_test)
_, predicted = torch.max(outputs.data, 1)
preds.extend(predicted.numpy().tolist())
```
阅读全文