编写pytorch代码,定义归一化器,计算归一化器的均值和标准差,更新归一化器的均值和标准差,对特征集和标签集进行归一化
时间: 2023-10-25 17:35:49 浏览: 164
好的,以下是针对你的问题的 PyTorch 代码,你可以参考一下:
```python
import torch
class Normalizer:
def __init__(self, feature_dim):
self.mean = torch.zeros(feature_dim)
self.var = torch.zeros(feature_dim)
self.count = 0
def update(self, x):
batch_mean = torch.mean(x, dim=0)
batch_var = torch.var(x, dim=0)
batch_count = x.shape[0]
delta = batch_mean - self.mean
new_mean = self.mean + delta * batch_count / (self.count + batch_count)
m_a = self.var * self.count
m_b = batch_var * batch_count
M2 = m_a + m_b + delta ** 2 * self.count * batch_count / (self.count + batch_count)
new_var = M2 / (self.count + batch_count)
self.mean = new_mean
self.var = new_var
self.count = self.count + batch_count
def normalize(self, x):
return (x - self.mean) / torch.sqrt(self.var + 1e-8)
```
这个 `Normalizer` 类包含了三个方法:
- `__init__(self, feature_dim)`:构造函数,传入特征维度 `feature_dim`,初始化均值、方差和计数器。
- `update(self, x)`:传入当前的特征集 `x`,计算均值和方差的滑动平均值,并更新计数器。
- `normalize(self, x)`:传入特征集 `x`,对其进行归一化,输出归一化后的结果。
你可以按照以下步骤使用这个类:
```python
# 假设特征集和标签集分别为 features 和 labels
feature_dim = features.shape[-1]
normalizer = Normalizer(feature_dim)
# 计算均值和方差的滑动平均值
normalizer.update(features)
# 对特征集和标签集进行归一化
normalized_features = normalizer.normalize(features)
normalized_labels = normalizer.normalize(labels)
```
希望这个代码对你有帮助!
阅读全文