如何使用Mindspore实现逻辑回归来对鸢尾花数据集进行分类
时间: 2024-04-30 19:23:33 浏览: 287
逻辑回归-鸢尾花数据集分类
1. 加载数据集
首先,我们需要加载鸢尾花数据集。我们可以使用sklearn库中的load_iris函数来加载数据集,然后将其拆分为训练集和测试集。
```python
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
iris = load_iris()
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2, random_state=42)
```
2. 定义模型
接下来,我们需要定义逻辑回归模型。在Mindspore中,我们可以使用nn.SoftmaxCrossEntropyWithLogits来定义模型。
```python
import mindspore.nn as nn
class LogisticRegression(nn.Cell):
def __init__(self):
super(LogisticRegression, self).__init__()
self.fc = nn.Dense(3, 1)
def construct(self, x):
x = self.fc(x)
return x
```
这个模型包含一个全连接层,输入是4维的特征向量,输出是1维的标签。
3. 定义损失函数和优化器
接下来,我们需要定义损失函数和优化器。在逻辑回归中,我们通常使用交叉熵损失函数。在Mindspore中,我们可以使用nn.SoftmaxCrossEntropyWithLogits来定义损失函数。对于优化器,我们可以使用AdamOptimizer。
```python
import mindspore.ops.operations as P
from mindspore.nn.optim import Adam
criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
optimizer = Adam(params=model.trainable_params(), learning_rate=0.01)
```
4. 训练模型
现在,我们可以开始训练模型了。我们将使用Mindspore中的Model类来训练模型。在训练过程中,我们需要定义训练数据集、损失函数和优化器。
```python
import mindspore.dataset as ds
from mindspore.train.callback import LossMonitor
train_ds = ds.NumpySlicesDataset((X_train, y_train))
model = LogisticRegression()
model_loss = nn.WithLossCell(model, criterion)
model_loss_train = nn.TrainOneStepCell(model_loss, optimizer)
model_train = nn.Model(model_loss_train)
model_train.train(epochs=100, train_dataset=train_ds, callbacks=[LossMonitor()])
```
在训练过程中,我们还可以使用Mindspore中的LossMonitor来监控损失函数的变化。
5. 测试模型
训练完成后,我们可以使用测试数据集来测试模型的性能。
```python
from mindspore.nn.metrics import Accuracy
test_ds = ds.NumpySlicesDataset((X_test, y_test))
model_eval = nn.Model(model)
accuracy = Accuracy()
for data, label in test_ds.create_dict_iterator():
output = model_eval(data)
accuracy.update(output, label)
print("Accuracy:", accuracy.eval())
```
在测试过程中,我们还可以使用Mindspore中的Accuracy来计算模型的准确率。
完整代码如下:
```python
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
import mindspore.nn as nn
import mindspore.ops.operations as P
from mindspore.nn.optim import Adam
import mindspore.dataset as ds
from mindspore.train.callback import LossMonitor
from mindspore.nn.metrics import Accuracy
iris = load_iris()
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2, random_state=42)
class LogisticRegression(nn.Cell):
def __init__(self):
super(LogisticRegression, self).__init__()
self.fc = nn.Dense(3, 1)
def construct(self, x):
x = self.fc(x)
return x
criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
optimizer = Adam(params=model.trainable_params(), learning_rate=0.01)
train_ds = ds.NumpySlicesDataset((X_train, y_train))
model = LogisticRegression()
model_loss = nn.WithLossCell(model, criterion)
model_loss_train = nn.TrainOneStepCell(model_loss, optimizer)
model_train = nn.Model(model_loss_train)
model_train.train(epochs=100, train_dataset=train_ds, callbacks=[LossMonitor()])
test_ds = ds.NumpySlicesDataset((X_test, y_test))
model_eval = nn.Model(model)
accuracy = Accuracy()
for data, label in test_ds.create_dict_iterator():
output = model_eval(data)
accuracy.update(output, label)
print("Accuracy:", accuracy.eval())
```
阅读全文