class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv1d(in_channels=1, out_channels=64, kernel_size=32, stride=8, padding=12) self.pool1 = nn.MaxPool1d(kernel_size=2, stride=2) self.BN = nn.BatchNorm1d(num_features=64) self.conv3_1 = nn.Conv1d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1) self.pool3_1 = nn.MaxPool1d(kernel_size=2, stride=2) self.conv3_2 = nn.Conv1d(in_channels=64, out_channels=128, kernel_size=3, stride=1, padding=1) self.pool3_2 = nn.MaxPool1d(kernel_size=2, stride=2) self.conv3_3 = nn.Conv1d(in_channels=128, out_channels=256, kernel_size=3, stride=1, padding=1) self.pool3_3 = nn.MaxPool1d(kernel_size=2, stride=2) self.conv5_1 = nn.Conv1d(in_channels=64, out_channels=64, kernel_size=5, stride=1, padding=2) self.pool5_1 = nn.MaxPool1d(kernel_size=2, stride=2) self.conv5_2 = nn.Conv1d(in_channels=64, out_channels=128, kernel_size=5, stride=1, padding=2) self.pool5_2 = nn.MaxPool1d(kernel_size=2, stride=2) self.conv5_3 = nn.Conv1d(in_channels=128, out_channels=256, kernel_size=5, stride=1, padding=2) self.pool5_3 = nn.MaxPool1d(kernel_size=2, stride=2) self.conv7_1 = nn.Conv1d(in_channels=64, out_channels=64, kernel_size=7, stride=1, padding=3) self.pool7_1 = nn.MaxPool1d(kernel_size=2, stride=2) self.conv7_2 = nn.Conv1d(in_channels=64, out_channels=128, kernel_size=7, stride=1, padding=3) self.pool7_2 = nn.MaxPool1d(kernel_size=2, stride=2) self.conv7_3 = nn.Conv1d(in_channels=128, out_channels=256, kernel_size=7, stride=1, padding=3) self.pool7_3 = nn.MaxPool1d(kernel_size=2, stride=2) self.pool2 = nn.MaxPool1d(kernel_size=8, stride=1) self.fc = nn.Linear(in_features=256 * 3, out_features=4) ##这里的256*3是计算出来的 self.softmax = nn.Softmax(),解释各部分的作用和参数选择
时间: 2023-06-01 19:07:02 浏览: 141
这段代码定义了一个名为Net的类,继承了nn.Module类。在初始化函数中,它定义了多个一维卷积层(nn.Conv1d)、最大池化层(nn.MaxPool1d)、BN层(nn.BatchNorm1d)和全连接层(nn.Linear)。这些层用于构建神经网络模型。其中,卷积层、池化层和BN层用于特征提取,全连接层用于分类。此模型的输入是一个通道的一维数据,输出是四个类别的概率分布。
相关问题
class Net(nn.Module): def__init__(self): super(Net,self).__init__()
`class Net(nn.Module):` 这是在 PyTorch 框架中定义一个神经网络模块(Neural Network Module)的方式。`nn.Module` 是 PyTorch 提供的基础类,用于构建可训练的模型。`Net` 类继承了 `nn.Module`,这意味着 `Net` 就是一个可以接受数据并进行前向传播(forward pass)的容器。
`def __init__(self):` 这个部分是 `Net` 类的构造函数,也叫初始化方法。当你实例化 `Net` 类的时候,`__init__` 方法会被自动调用。`super(Net, self).__init__()` 这行代码的作用是调用父类 `nn.Module` 的初始化过程,确保 `Net` 类继承到的所有基础属性和方法都得到了正确的配置。
举个简单的例子:
```python
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
# 初始化网络层
self.conv1 = nn.Conv2d(3, 6, 5) # 卷积层
self.pool = nn.MaxPool2d(2, 2) # 池化层
self.fc1 = nn.Linear(120, 84) # 全连接层
self.fc2 = nn.Linear(84, 10) # 输出层
def forward(self, x):
# 定义网络的前向传播路径
x = self.pool(F.relu(self.conv1(x)))
x = F.relu(self.fc1(x.view(-1, 120)))
return self.fc2(x)
net = Net()
```
在这里,`__init__` 函数帮我们设置了网络的基本结构。
class Tudui(nn.Module): def __init__(self): super(Tudui ,self).__init__()
class Tudui(nn.Module):
def __init__(self):
super(Tudui, self).__init__()
在这段代码中,定义了一个名为Tudui的类,它继承自nn.Module类。在类的构造函数中,调用了父类nn.Module的构造函数来进行初始化操作。
阅读全文