基于matlab平台,给出代码:RRT*与DWA融合在动态环境下避障
时间: 2024-05-01 14:19:18 浏览: 217
由于RRT*和DWA算法都比较复杂,这里只能给出大致的代码框架,具体实现还需要根据具体情况进行调整。
1. RRT*算法:
```matlab
function [path, tree] = RRT_star(start, goal, obstacles, max_iter, step_size, goal_tol, connect_prob)
% 初始化树
tree = struct('vertex', {}, 'edge', {});
tree(1).vertex = start;
tree(1).edge = [];
% 开始迭代
for i = 1:max_iter
% 随机采样点
if rand() < connect_prob
q_rand = goal;
else
q_rand = sample_free_space(obstacles);
end
% 找到最近点
q_near_idx = nearest_neighbor(tree, q_rand);
q_near = tree(q_near_idx).vertex;
% 扩展树
q_new = steer(q_near, q_rand, step_size);
if ~collision_check(q_near, q_new, obstacles)
% 找到最优父节点
[q_min_idx, c_min] = find_best_parent(tree, q_new, q_near_idx, step_size);
q_min = tree(q_min_idx).vertex;
% 添加节点
tree(end+1).vertex = q_new;
tree(end).edge = [q_min_idx, length(tree)];
% 重新连接父节点
rewire(tree, q_new, q_near_idx, c_min, step_size);
end
% 判断是否到达终点
if norm(q_new - goal) < goal_tol
% 找到最优路径
path = find_path(tree, length(tree));
return;
end
end
% 没有找到路径
path = [];
end
```
2. DWA算法:
```matlab
function [v, w] = DWA(x, goal, obstacles, v_min, v_max, w_min, w_max, dt, goal_tol, max_speed, max_yawrate, max_accel, max_dyawrate, v_reso, yawrate_reso, delta_t, predict_time)
% 生成动态窗口
dw = calc_dynamic_window(x, v_min, v_max, w_min, w_max, dt, max_speed, max_yawrate, max_accel, max_dyawrate);
% 计算目标函数
u, traj = calc_control_and_trajectory(dw, x, goal, obstacles, v_reso, yawrate_reso, delta_t, predict_time);
% 选择最优控制输入
v, w = select_best_input(u, dw);
% 判断是否到达终点
if norm(x(1:2) - goal) < goal_tol
v = 0;
w = 0;
end
end
```
3. RRT*和DWA融合:
```matlab
function [path, tree] = RRT_star_DWA(start, goal, obstacles, max_iter, step_size, goal_tol, connect_prob, v_min, v_max, w_min, w_max, dt, max_speed, max_yawrate, max_accel, max_dyawrate, v_reso, yawrate_reso, delta_t, predict_time)
% 初始化树
tree = struct('vertex', {}, 'edge', {});
tree(1).vertex = start;
tree(1).edge = [];
x = start;
for i = 1:max_iter
% 使用DWA算法生成控制输入
v, w = DWA(x, goal, obstacles, v_min, v_max, w_min, w_max, dt, goal_tol, max_speed, max_yawrate, max_accel, max_dyawrate, v_reso, yawrate_reso, delta_t, predict_time);
% 计算下一个状态
x_next = motion(x, v, w, dt);
% 判断是否碰撞
if collision_check(x, x_next, obstacles)
continue;
end
% 将下一个状态加入树中
q_new = x_next(1:2);
q_near_idx = nearest_neighbor(tree, q_new);
q_near = tree(q_near_idx).vertex;
% 找到最优父节点
[q_min_idx, c_min] = find_best_parent(tree, q_new, q_near_idx, step_size);
q_min = tree(q_min_idx).vertex;
% 添加节点
tree(end+1).vertex = q_new;
tree(end).edge = [q_min_idx, length(tree)];
% 重新连接父节点
rewire(tree, q_new, q_near_idx, c_min, step_size);
% 判断是否到达终点
if norm(q_new - goal) < goal_tol
% 找到最优路径
path = find_path(tree, length(tree));
return;
end
% 更新状态
x = x_next;
end
% 没有找到路径
path = [];
end
```
需要注意的是,在动态环境下,RRT*算法可能会找不到路径,因此需要在一定时间内尽可能多地搜索,并在超时后返回最优路径。同时,需要根据具体情况调整参数,如树的扩展步长、动态窗口的参数等。
阅读全文