如何使用tensorflow2代码实现SE注意力模块
时间: 2023-06-03 13:04:39 浏览: 231
Python-MobileNetV3架构的非官方TensorFlow实现
您好,可以使用以下代码实现SE注意力模块:
```python
from tensorflow.keras.layers import Layer, Dense, Reshape, Multiply, Add
import tensorflow.keras.backend as K
class SE(Layer):
def __init__(self, units, activation='relu', **kwargs):
super(SE, self).__init__(**kwargs)
self.units = units
self.activation = activation
def build(self, input_shape):
self.fc1 = Dense(self.units, activation=self.activation, kernel_initializer='he_normal')
self.fc2 = Dense(input_shape[-1], activation='sigmoid', kernel_initializer='glorot_normal')
def call(self, inputs):
x = K.mean(inputs, axis=1, keepdims=True)
x = self.fc1(x)
x = self.fc2(x)
x = Multiply()([inputs, x])
return Add()([inputs, x])
def compute_output_shape(self, input_shape):
return input_shape
```
使用方法:
```python
from tensorflow.keras.layers import Input, Embedding, LSTM, Bidirectional, Dense
from tensorflow.keras.models import Model
inputs = Input(shape=(10,))
x = Embedding(input_dim=1000, output_dim=256)(inputs)
x = Bidirectional(LSTM(64, return_sequences=True))(x)
x = SE(64)(x)
x = Dense(1, activation='sigmoid')(x)
model = Model(inputs, x)
model.summary()
```
其中SE(64)表示输出特征维度为64的SE注意力模块。感谢您的提问,如果还有其他问题可以继续咨询我。
阅读全文