用python写基于灰度质心与聚类提取关键帧的代码
时间: 2024-05-10 17:18:12 浏览: 132
关键帧的提取代码
4星 · 用户满意度95%
以下是基于灰度质心与聚类提取关键帧的Python代码,其中使用了OpenCV库来处理图像:
```python
import cv2
import numpy as np
def extract_keyframes(video_path, num_keyframes):
cap = cv2.VideoCapture(video_path)
# 获取视频的帧率和总帧数
fps = cap.get(cv2.CAP_PROP_FPS)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
# 计算每几帧进行一次关键帧提取
frame_interval = int(total_frames / num_keyframes)
keyframes = []
# 对于每一个关键帧,计算灰度质心并进行聚类
for i in range(num_keyframes):
# 读取当前帧
cap.set(cv2.CAP_PROP_POS_FRAMES, i * frame_interval)
ret, frame = cap.read()
if not ret:
break
# 转化为灰度图
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# 计算灰度质心
moments = cv2.moments(gray)
cx = int(moments['m10'] / moments['m00'])
cy = int(moments['m01'] / moments['m00'])
# 将灰度质心和帧图像一起加入列表
keyframes.append((cx, cy, frame))
# 进行聚类,选择最靠近聚类中心的帧作为关键帧
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0)
flags = cv2.KMEANS_PP_CENTERS
# 将灰度质心作为特征进行聚类
features = np.array([(cx, cy) for (cx, cy, _) in keyframes], dtype=np.float32)
compactness, labels, centers = cv2.kmeans(features, num_keyframes, None, criteria, 10, flags)
# 选择每个聚类中心最近的帧作为关键帧
for i in range(num_keyframes):
cluster_frames = [frame for (idx, frame) in enumerate(keyframes) if labels[idx] == i]
distances = [(cx - centers[i][0]) ** 2 + (cy - centers[i][1]) ** 2 for (cx, cy, _) in cluster_frames]
min_idx = np.argmin(distances)
keyframes[i] = cluster_frames[min_idx]
# 按时间顺序排序并返回关键帧
keyframes = sorted(keyframes, key=lambda x: x[2])
return [frame for (_, _, frame) in keyframes]
```
这个函数接受视频文件路径和需要提取的关键帧数量作为参数,返回提取的关键帧图像的列表。该函数将视频分成几个间隔,并计算每个间隔内的灰度质心。然后,将灰度质心作为特征进行聚类,并选择每个聚类中心最近的帧作为关键帧。最后按时间顺序对关键帧进行排序并返回。
阅读全文