STM32F407寄存器版本使能中断

时间: 2023-09-17 10:13:57 浏览: 42
在STM32F407中,使能中断的寄存器是NVIC_ISERx,其中x表示中断号的组别,可以是0、1、2等。每个组别有32个中断号,因此需要选择正确的组别来使能特定的中断。 下面是一个示例代码,演示如何使能一个中断: ```c // 使能USART1的中断 NVIC_ISER1 |= (1 << 5); ``` 在上面的代码中,我们使用了位运算符来将第5个中断号(对应于USART1)的位置1,从而使能了该中断。注意,只有在USART1的中断控制器中设置了相应的中断使能位后,才能使用上面的代码使能该中断。
相关问题

STM32F407寄存器版本使能外部中断

要使能STM32F407的外部中断,需要进行以下步骤: 1. 配置GPIO引脚为输入模式,并使能对应的时钟。 ```c RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOx, ENABLE); GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Pin = GPIO_Pin_x; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz; GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_Init(GPIOx, &GPIO_InitStructure); ``` 2. 配置NVIC中断优先级。 ```c NVIC_InitTypeDef NVIC_InitStructure; NVIC_InitStructure.NVIC_IRQChannel = EXTIx_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0x00; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0x00; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); ``` 3. 配置外部中断线路。 ```c RCC_APB2PeriphClockCmd(RCC_APB2Periph_SYSCFG, ENABLE); SYSCFG_EXTILineConfig(EXTI_PortSourceGPIOx, EXTI_PinSourcex); EXTI_InitTypeDef EXTI_InitStructure; EXTI_InitStructure.EXTI_Line = EXTI_Line_x; EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt; EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Rising; // or EXTI_Trigger_Falling EXTI_InitStructure.EXTI_LineCmd = ENABLE; EXTI_Init(&EXTI_InitStructure); ``` 4. 实现中断处理函数。 ```c void EXTIx_IRQHandler(void) { if (EXTI_GetITStatus(EXTI_Line_x) != RESET) { // 处理中断事件 // ... EXTI_ClearITPendingBit(EXTI_Line_x); } } ``` 注意,上述代码中的x需要替换为具体的引脚编号,例如PA0对应的引脚编号为0。

STM32F407寄存器方式写USB中断等级

以下是在寄存器方式中设置USB中断优先级的示例代码: ```c void USB_LP_CAN1_RX0_IRQHandler(void) { // Handle USB interrupt here } void Enable_USB_Interrupt(void) { // Enable USB interrupt NVIC->ISER[USB_LP_CAN1_RX0_IRQn / 32] = (uint32_t)1 << (USB_LP_CAN1_RX0_IRQn % 32); // Set USB interrupt priority to 0 NVIC_SetPriority(USB_LP_CAN1_RX0_IRQn, 0); } void Disable_USB_Interrupt(void) { // Disable USB interrupt NVIC->ICER[USB_LP_CAN1_RX0_IRQn / 32] = (uint32_t)1 << (USB_LP_CAN1_RX0_IRQn % 32); } ``` 在上述代码中,我们使用了NVIC_ISER和NVIC_ICER寄存器来使能和禁止USB中断。我们将中断号USB_LP_CAN1_RX0_IRQn除以32得到对应的寄存器号,将中断号模32得到对应的位位置,然后使用左移操作获取一个使能或禁止中断的掩码,最后将掩码写入相应的寄存器中,即可使能或禁止USB中断。 在设置USB中断优先级时,我们使用了NVIC_SetPriority()函数。这个函数可以设置中断的优先级和子优先级。优先级的取值范围为0-15,0表示最高优先级,15表示最低优先级。具体的优先级设置需要根据你的需求进行调整。

相关推荐

最新推荐

recommend-type

CUBEMX-STM32F030学习笔记

"CUBEMX-STM32F030学习笔记" 本笔记旨在详细介绍STM32F030的功能、原理、CUBE配置图片步骤、选项功能意义、加入的功能代码、性能范围和实践经验值。 一、STM32F030F4P6简介 STM32F030F4P6是一款32位微控制器,...
recommend-type

STM32F303RE数据手册.pdf

STM32F303RE 微控制器数据手册 STM32F303RE 是一款基于 ARM Cortex-M4 核心的 32 位微控制器,由 STMicroelectronics 公司生产。该芯片具有强大的处理能力和丰富的外设资源,适合于各种应用场景,包括工业控制、...
recommend-type

STM32的使用之SPI通信DMA模式

在STM32F303VC微控制器中,我们可以使用SPI通信DMA模式来实现自动数据的发送和接收。下面是基本步骤: 1. 配置好SPI相应引脚功能 2. 配置和初始化SPI 3. 初始化DMA 4. 片选信号选择要通信的设备 5. 打开DMA对应DMA...
recommend-type

STM32串口发送注意问题

STM32串口发送注意问题 在使用STM32串口发送...* 在STM32F030xx单片机上,无论是否发送字节,只要TDR为空,TXE置位,移位寄存器也为空,TC就会置位。 * 在发送数据过程中,需要注意TC状态位的变化,以避免数据丢失。
recommend-type

关于STM32的I2C硬件DMA实现

"关于STM32的I2C硬件DMA实现" STM32的I2C硬件DMA实现是一个复杂的主题,但只要基础牢靠,并没有想象中的那么困难。...通过了解I2C协议、STM32的寄存器、中断方式、DMA控制器,可以正确地实现STM32的I2C硬件DMA实现。
recommend-type

数据结构课程设计:模块化比较多种排序算法

本篇文档是关于数据结构课程设计中的一个项目,名为“排序算法比较”。学生针对专业班级的课程作业,选择对不同排序算法进行比较和实现。以下是主要内容的详细解析: 1. **设计题目**:该课程设计的核心任务是研究和实现几种常见的排序算法,如直接插入排序和冒泡排序,并通过模块化编程的方法来组织代码,提高代码的可读性和复用性。 2. **运行环境**:学生在Windows操作系统下,利用Microsoft Visual C++ 6.0开发环境进行编程。这表明他们将利用C语言进行算法设计,并且这个环境支持高效的性能测试和调试。 3. **算法设计思想**:采用模块化编程策略,将排序算法拆分为独立的子程序,比如`direct`和`bubble_sort`,分别处理直接插入排序和冒泡排序。每个子程序根据特定的数据结构和算法逻辑进行实现。整体上,算法设计强调的是功能的分块和预想功能的顺序组合。 4. **流程图**:文档包含流程图,可能展示了程序设计的步骤、数据流以及各部分之间的交互,有助于理解算法执行的逻辑路径。 5. **算法设计分析**:模块化设计使得程序结构清晰,每个子程序仅在被调用时运行,节省了系统资源,提高了效率。此外,这种设计方法增强了程序的扩展性,方便后续的修改和维护。 6. **源代码示例**:提供了两个排序函数的代码片段,一个是`direct`函数实现直接插入排序,另一个是`bubble_sort`函数实现冒泡排序。这些函数的实现展示了如何根据算法原理操作数组元素,如交换元素位置或寻找合适的位置插入。 总结来说,这个课程设计要求学生实际应用数据结构知识,掌握并实现两种基础排序算法,同时通过模块化编程的方式展示算法的实现过程,提升他们的编程技巧和算法理解能力。通过这种方式,学生可以深入理解排序算法的工作原理,同时学会如何优化程序结构,提高程序的性能和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32单片机小车智能巡逻车设计与实现:打造智能巡逻车,开启小车新时代

![stm32单片机小车](https://img-blog.csdnimg.cn/direct/c16e9788716a4704af8ec37f1276c4dc.png) # 1. STM32单片机简介及基础** STM32单片机是意法半导体公司推出的基于ARM Cortex-M内核的高性能微控制器系列。它具有低功耗、高性能、丰富的外设资源等特点,广泛应用于工业控制、物联网、汽车电子等领域。 STM32单片机的基础架构包括CPU内核、存储器、外设接口和时钟系统。其中,CPU内核负责执行指令,存储器用于存储程序和数据,外设接口提供与外部设备的连接,时钟系统为单片机提供稳定的时钟信号。 S
recommend-type

devc++如何监视

Dev-C++ 是一个基于 Mingw-w64 的免费 C++ 编程环境,主要用于 Windows 平台。如果你想监视程序的运行情况,比如查看内存使用、CPU 使用率、日志输出等,Dev-C++ 本身并不直接提供监视工具,但它可以在编写代码时结合第三方工具来实现。 1. **Task Manager**:Windows 自带的任务管理器可以用来实时监控进程资源使用,包括 CPU 占用、内存使用等。只需打开任务管理器(Ctrl+Shift+Esc 或右键点击任务栏),然后找到你的程序即可。 2. **Visual Studio** 或 **Code::Blocks**:如果你习惯使用更专业的
recommend-type

哈夫曼树实现文件压缩解压程序分析

"该文档是关于数据结构课程设计的一个项目分析,主要关注使用哈夫曼树实现文件的压缩和解压缩。项目旨在开发一个实用的压缩程序系统,包含两个可执行文件,分别适用于DOS和Windows操作系统。设计目标中强调了软件的性能特点,如高效压缩、二级缓冲技术、大文件支持以及友好的用户界面。此外,文档还概述了程序的主要函数及其功能,包括哈夫曼编码、索引编码和解码等关键操作。" 在数据结构课程设计中,哈夫曼树是一种重要的数据结构,常用于数据压缩。哈夫曼树,也称为最优二叉树,是一种带权重的二叉树,它的构造原则是:树中任一非叶节点的权值等于其左子树和右子树的权值之和,且所有叶节点都在同一层上。在这个文件压缩程序中,哈夫曼树被用来生成针对文件中字符的最优编码,以达到高效的压缩效果。 1. 压缩过程: - 首先,程序统计文件中每个字符出现的频率,构建哈夫曼树。频率高的字符对应较短的编码,反之则对应较长的编码。这样可以使得频繁出现的字符用较少的位来表示,从而降低存储空间。 - 接着,使用哈夫曼编码将原始文件中的字符转换为对应的编码序列,完成压缩。 2. 解压缩过程: - 在解压缩时,程序需要重建哈夫曼树,并根据编码序列还原出原来的字符序列。这涉及到索引编码和解码,通过递归函数如`indexSearch`和`makeIndex`实现。 - 为了提高效率,程序采用了二级缓冲技术,它能减少磁盘I/O次数,提高读写速度。 3. 软件架构: - 项目包含了两个可执行文件,`DosHfm.exe`适用于DOS系统,体积小巧,运行速度快;而`WinHfm.exe`则为Windows环境设计,提供了更友好的图形界面。 - 程序支持最大4GB的文件压缩,这是Fat32文件系统的限制。 4. 性能特点: - 除了基本的压缩和解压缩功能外,软件还提供了一些额外的特性,如显示压缩进度、文件一致性检查等。 - 哈夫曼编码的使用提高了压缩率,而二级缓冲技术使压缩速度提升了75%以上。 这个项目不仅展示了数据结构在实际问题中的应用,还体现了软件工程的实践,包括需求分析、概要设计以及关键算法的实现。通过这样的课程设计,学生可以深入理解数据结构和算法的重要性,并掌握实际编程技能。