eta_second = iter_time.global_avg * (len(iterable) - i) eta_string = str(datetime.timedelta(seconds=eta_second))
时间: 2024-04-20 16:25:09 浏览: 103
这段代码计算了剩余迭代时间(ETA)。它使用了`iter_time`对象的`global_avg`属性,该属性存储了迭代时间的全局平均值。乘以`(len(iterable) - i)`即剩余的迭代次数,得到了剩余迭代所需的总时间。
然后,通过`datetime.timedelta(seconds=eta_second)`将剩余时间的秒数转换为`timedelta`对象,并使用`str()`函数将其转换为字符串形式。这样就得到了表示剩余迭代时间的字符串`eta_string`。
这段代码可用于估计迭代的剩余时间,并将其以易读的方式呈现给用户。
还有其他问题需要我解答吗?
相关问题
MB = 1024.0 * 1024.0 for obj in iterable: data_time.update(time.time() - end) yield obj iter_time.update(time.time() - end) if i % print_freq == 0 or i == len(iterable) - 1: eta_second = iter_time.global_avg * (len(iterable) - i) eta_string = str(datetime.timedelta(seconds=eta_second)) if torch.cuda.is_available(): print(log_msg.format(i, len(iterable), eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time), memory=torch.cuda.max_memory_allocated() / MB)) else: print(log_msg.format(i, len(iterable), eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time))) i += 1 end = time.time()
这段代码是`MetricLogger`类的`log_every`方法的一部分,用于在迭代过程中记录指标并打印日志。
在这段代码中,通过一个循环迭代`iterable`对象,对每个迭代进行以下操作:
- 更新数据加载时间 `data_time`
- 使用`yield`语句返回迭代对象 `obj`
- 更新迭代时间 `iter_time`
- 如果达到了打印日志的频率(`print_freq`)或者已经到达迭代的最后一次,执行以下操作:
- 计算预计剩余时间 `eta_second`,即平均每个迭代所花费的时间乘以剩余迭代次数
- 将预计剩余时间转换为字符串表示 `eta_string`
- 根据CUDA是否可用,选择打印日志的方式:
- 如果CUDA可用,使用`log_msg`格式化字符串打印日志,包括迭代计数、总迭代次数、预计剩余时间、当前指标的字符串表示、迭代时间、数据加载时间和当前最大内存使用量
- 如果CUDA不可用,使用`log_msg`格式化字符串打印日志,不包括最大内存使用量
- 更新迭代计数 `i`
- 更新结束时间 `end`
通过这段代码,可以在每个迭代步骤中记录指标并根据指定的频率打印日志。日志中包含了迭代计数、总迭代次数、预计剩余时间、当前指标的字符串表示、迭代时间和数据加载时间。如果CUDA可用,还会打印当前的最大内存使用量。这些日志信息有助于实时监控训练的进展和指标变化。
self.state_size = state_size self.action_size = action_size self.BUFFER_SIZE = BUFFER_SIZE self.BATCH_SIZE = BATCH_SIZE self.per = per self.munchausen = munchausen self.n_step = n_step self.distributional = distributional self.D2RL = D2RL self.curiosity = curiosity[0] self.reward_addon = curiosity[1] self.GAMMA = GAMMA self.TAU = TAU self.LEARN_EVERY = LEARN_EVERY self.LEARN_NUMBER = LEARN_NUMBER self.EPSILON_DECAY = EPSILON_DECAY self.device = device self.seed = random.seed(random_seed) # distributional Values self.N = 32 self.entropy_coeff = 0.001 # munchausen values self.entropy_tau = 0.03 self.lo = -1 self.alpha = 0.9 self.eta = torch.FloatTensor([.1]).to(device) print("Using: ", device)
这段代码看起来像是在初始化一个 RL(强化学习)算法的参数设置。其中,state_size 表示状态空间的大小,action_size 表示动作空间的大小,BUFFER_SIZE 和 BATCH_SIZE 分别表示经验池的大小和每次学习的数据量,per 表示是否使用优先经验回放,munchausen 表示是否使用 Munchausen RL 算法,n_step 表示使用 n-step TD 学习的步数,distributional 表示是否使用分布式 DQN 算法,D2RL 表示是否使用 D2RL 算法,curiosity 表示是否使用探索奖励机制,reward_addon 表示探索奖励的大小,GAMMA 表示折扣因子,TAU 表示目标网络更新参数的速度,LEARN_EVERY 和 LEARN_NUMBER 分别表示学习的频率和学习次数,EPSILON_DECAY 表示 epsilon 贪心策略的衰减速度,device 表示使用的计算设备,seed 表示随机数生成器的种子。
其中,N 表示分布式 DQN 算法中分布的数量,entropy_coeff 表示分布式 DQN 算法中的熵系数,entropy_tau 表示 Munchausen RL 算法中的熵系数,lo 表示 Munchausen RL 算法中的较小的负数,alpha 表示 Munchausen RL 算法中的一个参数,eta 表示 Munchausen RL 算法中的一个常数。
阅读全文