解释代码: def __init__(self, X, n_components, start_df, random_state, init_type): self.loc_, self.scale_, self.scale_inv_chole_, self.scale_chole_ = \ self.initialize_params(X, n_components, random_state, init_type) self.df_ = np.full(shape=n_components, fill_value=start_df) self.resp = None self.a_nm, self.b_nm = None, None self.E_gamma = None self.E_log_gamma = None self.E_log_weights = None self.wishart_vm = None self.kappa_m = None self.eta_m = None
时间: 2023-02-24 20:15:14 浏览: 347
这段代码定义了一个 Python 类的初始化方法 `__init__`。这个方法接收参数 `X`,`n_components`,`start_df`,`random_state` 和 `init_type`。
初始化方法会使用 `initialize_params` 方法对 `self.loc_`,`self.scale_`,`self.scale_inv_chole_` 和 `self.scale_chole_` 进行赋值。
然后,`self.df_` 将使用 `np.full` 方法创建一个 shape 为 `n_components`,元素都是 `start_df` 的数组。
其他变量 `self.resp`,`self.a_nm`,`self.b_nm`,`self.E_gamma`,`self.E_log_gamma`,`self.E_log_weights`,`self.wishart_vm`,`self.kappa_m` 和 `self.eta_m` 都被初始化为 `None`。
阅读全文