def __init__(self,folder):

时间: 2024-01-27 22:05:41 浏览: 110
`def __init__(self, folder):` 是一个Python中的初始化方法,用于在创建对象时进行初始化操作。在这个方法中,`self`代表当前对象,`folder`是一个参数,用于接收传入的值。 以下是一个示例代码,演示了如何使用`def __init__(self, folder):`方法进行初始化操作: ```python class Folder(object): def __init__(self, folder): self.folder = folder def get_folder(self): return self.folder # 创建一个Folder对象,并传入参数"Documents" folder_obj = Folder("Documents") # 调用get_folder方法获取folder属性的值 print(folder_obj.get_folder()) # 输出:Documents ``` 在上述代码中,我们定义了一个名为`Folder`的类,其中包含了一个`def __init__(self, folder):`方法。在这个方法中,我们将传入的`folder`值赋给了对象的`folder`属性。然后,我们创建了一个`Folder`对象,并传入参数"Documents"。最后,我们调用了`get_folder`方法来获取`folder`属性的值,并将其打印出来。
相关问题

class CocoDetection(torchvision.datasets.CocoDetection): def __init__(self, img_folder, ann_file, transforms, return_masks): super(CocoDetection, self).__init__(img_folder, ann_file) self._transforms = transforms self.prepare = ConvertCocoPolysToMask(return_masks) def __getitem__(self, idx): img, target = super(CocoDetection, self).__getitem__(idx) image_id = self.ids[idx] target = {'image_id': image_id, 'annotations': target} img, target = self.prepare(img, target) if self._transforms is not None: img, target = self._transforms(img, target) return img, target怎么进行更改

这段代码是用来定义 `CocoDetection` 类的,它是一个继承自 `torchvision.datasets.CocoDetection` 的类,用于读取 COCO 数据集。在 `__getitem__` 方法中,它首先调用父类的 `__getitem__` 方法获取图像和目标信息,然后将目标信息转换为 COCO 标注格式,并且应用了一些预处理操作(例如将多边形转换为掩膜)。 如果你要为该类添加多尺度训练的支持,可以按照以下步骤进行: 1. 在 `CocoDetection` 类中添加一个成员变量 `scales`,用于存储多个尺度。例如: ```python class CocoDetection(torchvision.datasets.CocoDetection): def __init__(self, img_folder, ann_file, transforms, return_masks, scales): super(CocoDetection, self).__init__(img_folder, ann_file) self._transforms = transforms self.prepare = ConvertCocoPolysToMask(return_masks) self.scales = scales ``` 2. 修改 `__getitem__` 方法,使其支持多尺度训练。具体来说,可以在每个 epoch 中随机选择一个尺度,然后将图像和目标信息缩放到该尺度。例如: ```python def __getitem__(self, idx): # 选择一个尺度 scale_idx = random.randint(0, len(self.scales) - 1) scale = self.scales[scale_idx] # 获取图像和目标信息 img, target = super(CocoDetection, self).__getitem__(idx) image_id = self.ids[idx] target = {'image_id': image_id, 'annotations': target} # 将图像和目标信息缩放到指定尺度 transform = transforms.Compose([ transforms.Resize(scale), transforms.ToTensor(), ]) img = transform(img) target = self.prepare(target) bbox = target["annotations"]["bbox"] bbox[:, :4] *= scale target["annotations"]["bbox"] = bbox # 应用其它预处理操作 if self._transforms is not None: img, target = self._transforms(img, target) return img, target ``` 这里使用了 `transforms.Resize` 函数来缩放图像,同时还需要将目标信息中的边界框也相应缩放。注意,在这里我们将所有边界框的尺寸都缩放了相同的比例,这可能会导致一些较小的物体在缩放后变得过小,或者一些较大的物体在缩放后变得过大。因此,你可能需要进行一些调整,来适应你的具体应用场景。 3. 在训练代码中设置多个尺度,并将它们传递给 `CocoDetection` 实例的 `scales` 成员变量: ```python scales = [480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800] train_dataset = CocoDetection(img_folder, ann_file, transforms, return_masks, scales) ``` 这里使用了 11 个不同的尺度,你可以根据实际情况进行调整。 以上是一个示例代码,它演示了如何在 `CocoDetection` 类中支持多尺度训练。你可以根据具体需求进行修改。

def init_output_folder_handler(self): """ Init self.output_folder_handler. """ self.output_folder_handler = OutputFolderHandler(self.base_output_folder, model_name=self.model.name, cv=str(self.cv), additional_info=self.additional_output_folder_info)

这个方法名为`init_output_folder_handler`,用于初始化`self.output_folder_handler`。 在方法内部,使用`OutputFolderHandler`类创建了一个`self.output_folder_handler`对象。构造函数中传入了一些参数,包括`self.base_output_folder`作为基础输出文件夹路径,`model_name`作为模型名称(通过`self.model.name`获取),`cv`作为交叉验证的索引(通过`str(self.cv)`转换为字符串),以及`additional_info`作为额外的输出文件夹信息。 `OutputFolderHandler`是一个自定义的文件夹处理类,用于管理模型训练过程中的输出文件夹。它可以根据提供的参数,自动创建和管理输出文件夹的结构,方便保存和组织训练过程中产生的日志、模型权重、预测结果等文件。 通过创建`self.output_folder_handler`对象,可以在训练过程中方便地使用其提供的方法来处理输出文件夹,如创建子文件夹、保存文件等操作。
阅读全文

相关推荐

import os from PyQt5.QtCore import Qt from PyQt5.QtGui import QPixmap, QIcon from PyQt5.QtWidgets import QApplication, QWidget, QLabel, QVBoxLayout, QHBoxLayout, QTreeView, QFileSystemModel class ImageViewer(QWidget): def init(self, folder_path): super().init() self.folder_path = folder_path self.image_dict = {} self.current_image = None self.setWindowTitle("Image Viewer") self.setFixedSize(1000, 600) self.image_label = QLabel(self) self.image_label.setAlignment(Qt.AlignCenter) self.tree_view = QTreeView() self.tree_view.setMinimumWidth(250) self.tree_view.setMaximumWidth(250) self.model = QFileSystemModel() self.model.setRootPath(folder_path) self.tree_view.setModel(self.model) self.tree_view.setRootIndex(self.model.index(folder_path)) self.tree_view.setHeaderHidden(True) self.tree_view.setColumnHidden(1, True) self.tree_view.setColumnHidden(2, True) self.tree_view.setColumnHidden(3, True) self.tree_view.doubleClicked.connect(self.tree_item_double_clicked) self.main_layout = QHBoxLayout(self) self.main_layout.addWidget(self.tree_view) self.main_layout.addWidget(self.image_label) self.load_images() self.update_image() def load_images(self): for file_name in os.listdir(self.folder_path): if file_name.lower().endswith((".jpg", ".jpeg", ".png", ".gif", ".bmp")): file_path = os.path.join(self.folder_path, file_name) self.image_dict[file_name] = file_path current_image = list(self.image_dict.keys())[0] def update_image(self): if self.current_image is not None: pixmap = QPixmap(self.image_dict[self.current_image]) self.image_label.setPixmap(pixmap.scaled(self.width() - self.tree_view.width(), self.height(), Qt.KeepAspectRatio, Qt.SmoothTransformation)) def tree_item_double_clicked(self, index): file_name = self.model.fileName(index) if file_name in self.image_dict: self.current_image = file_name self.update_image() def keyPressEvent(self, event): if event.key() == Qt.Key_A: self.previous_image() elif event.key() == Qt.Key_D: self.next_image() elif event.key() in [Qt.Key_1, Qt.Key_2, Qt.Key_3, Qt.Key_4, Qt.Key_5]: self.save_text_file(event.key() - Qt.Key_0) def previous_image(self): if self.current_image is not None: file_names = list(self.image_dict.keys()) current_index = file_names.index(self.current_image) if current_index > 0: self.current_image = file_names[current_index - 1] else: self.current_image = file_names[-1] self.update_image() def next_image(self): if self.current_image is not None: file_names = list(self.image_dict.keys()) current_index = file_names.index(self.current_image) if current_index < len(file_names) - 1: self.current_image = file_names[current_index + 1] else: self.current_image = file_names[0] self.update_image() def save_text_file(self, number): if self.current_image is not None: file_name = self.current_image txt_file_path = os.path.join(self.folder_path, os.path.splitext(file_name)[0] + ".txt") with open(txt_file_path, "w") as file: file.write(str(number)) if name == "main": import sys app = QApplication(sys.argv) viewer = ImageViewer("D:/图片/wallpaper") viewer.show() sys.exit(app.exec_())这份代码实现不了使用键盘的A键向上翻页以及D键向下翻页,也实现不了键盘数字键生成相应txt文档,帮我分析一下错在哪里

import torch import os import torch.nn as nn import torch.optim as optim import numpy as np import random class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 16, kernel_size=3,stride=1) self.pool = nn.MaxPool2d(kernel_size=2,stride=2) self.conv2 = nn.Conv2d(16, 32, kernel_size=3,stride=1) self.fc1 = nn.Linear(32 * 9 * 9, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 2) def forward(self, x): x = self.pool(nn.functional.relu(self.conv1(x))) x = self.pool(nn.functional.relu(self.conv2(x))) x = x.view(-1, 32 * 9 * 9) x = nn.functional.relu(self.fc1(x)) x = nn.functional.relu(self.fc2(x)) x = self.fc3(x) return x net = Net() criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) folder_path1 = 'random_matrices2' # 创建空的tensor x = torch.empty((40, 1, 42, 42)) # 遍历文件夹内的文件,将每个矩阵转化为tensor并存储 for j in range(40): for j in range(40): file_name = 'matrix_{}.npy'.format(i) file_path1 = os.path.join(folder_path1, file_name) matrix1 = np.load(file_path1) x[j] = torch.from_numpy(matrix1).unsqueeze(0) folder_path2 = 'random_label2' y = torch.empty((40, 1)) for k in range(40): for k in range(40): file_name = 'label_{}.npy'.format(i) file_path2 = os.path.join(folder_path2, file_name) matrix2 = np.load(file_path2) y[k] = torch.from_numpy(matrix2).unsqueeze(0) for epoch in range(10): running_loss = 0.0 for i in range(40): inputs, labels = x[i], y[i] optimizer.zero_grad() outputs = net(inputs) optimizer.step() #running_loss += loss.item() #print('[%d] loss: %.3f' % (epoch + 1, running_loss / 40)) print('Finished Training') 加入loss可视化

import torch import os import torch.nn as nn import torch.optim as optim import numpy as np import random import matplotlib.pyplot as plt class Net(nn.Module): def init(self): super(Net, self).init() self.conv1 = nn.Conv2d(1, 16, kernel_size=3,stride=1) self.pool = nn.MaxPool2d(kernel_size=2,stride=2) self.conv2 = nn.Conv2d(16, 32, kernel_size=3,stride=1) self.fc1 = nn.Linear(32 * 9 * 9, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 2) def forward(self, x): x = self.pool(nn.functional.relu(self.conv1(x))) x = self.pool(nn.functional.relu(self.conv2(x))) x = x.view(-1, 32 * 9 * 9) x = nn.functional.relu(self.fc1(x)) x = nn.functional.relu(self.fc2(x)) x = self.fc3(x) return x net = Net() criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) folder_path1 = 'random_matrices2' # 创建空的tensor x = torch.empty((40, 1, 42, 42)) # 遍历文件夹内的文件,将每个矩阵转化为tensor并存储 for j in range(40): for j in range(40): file_name = 'matrix_{}.npy'.format(i) file_path1 = os.path.join(folder_path1, file_name) matrix1 = np.load(file_path1) x[j] = torch.from_numpy(matrix1).unsqueeze(0) folder_path2 = 'random_label2' y = torch.empty((40, )) for k in range(40): for k in range(40): file_name = 'label_{}.npy'.format(i) file_path2 = os.path.join(folder_path2, file_name) matrix2 = np.load(file_path2) y[k] = torch.from_numpy(matrix2) losses = [] for epoch in range(10): running_loss = 0.0 for i in range(40): inputs, labels = x[i], y[i] optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() losses.append(running_loss / 40) print('[%d] loss: %.3f' % (epoch + 1, running_loss / 40)) print('Finished Training') plt.plot(losses) plt.xlabel('Epoch') plt.ylabel('Loss') plt.show() 报错:ValueError: Expected input batch_size (1) to match target batch_size (0). 怎么修改?

最新推荐

recommend-type

macOS_Sequoia_15.1.password(imacos.top).rdr.split.016

macOS_Sequoia_15.1.password(imacos.top).rdr.split.016
recommend-type

【java毕业设计】小区物业管理系统(springboot+vue+mysql+说明文档).zip

项目经过测试均可完美运行! 环境说明: 开发语言:java jdk:jdk1.8 数据库:mysql 5.7+ 数据库工具:Navicat11+ 管理工具:maven 开发工具:idea/eclipse
recommend-type

里面全部都是浪漫的爱心特效,有html和python编写的,大概几十种,欢迎下载,收藏

里面全部都是浪漫的爱心特效,有html和python编写的,大概几十种,欢迎下载,收藏
recommend-type

Delphi 12 控件之FUPX-32bit-PORTABLE.zip

FUPX_32bit_PORTABLE.zip
recommend-type

HandyControl

HandyControl
recommend-type

Fisher Iris Setosa数据的主成分分析及可视化- Matlab实现

资源摘要信息: "该文档提供了一段关于在MATLAB环境下进行主成分分析(PCA)的代码,该代码针对的是著名的Fisher的Iris数据集(Iris Setosa部分),生成的输出包括帕累托图、载荷图和双图。Iris数据集是一个常用的教学和测试数据集,包含了150个样本的4个特征,这些样本分别属于3种不同的Iris花(Setosa、Versicolour和Virginica)。在这个特定的案例中,代码专注于Setosa这一种类的50个样本。" 知识点详细说明: 1. 主成分分析(PCA):PCA是一种统计方法,它通过正交变换将一组可能相关的变量转换为一组线性不相关的变量,这些新变量称为主成分。PCA在降维、数据压缩和数据解释方面非常有用。它能够将多维数据投影到少数几个主成分上,以揭示数据中的主要变异模式。 2. Iris数据集:Iris数据集由R.A.Fisher在1936年首次提出,包含150个样本,每个样本有4个特征:萼片长度、萼片宽度、花瓣长度和花瓣宽度。每个样本都标记有其对应的种类。Iris数据集被广泛用于模式识别和机器学习的分类问题。 3. MATLAB:MATLAB是一个高性能的数值计算和可视化软件,广泛用于工程、科学和数学领域。它提供了大量的内置函数,用于矩阵运算、函数和数据分析、算法开发、图形绘制和用户界面构建等。 4. 帕累托图:在PCA的上下文中,帕累托图可能是指对主成分的贡献度进行可视化,从而展示各个特征在各主成分上的权重大小,帮助解释主成分。 5. 载荷图:载荷图在PCA中显示了原始变量与主成分之间的关系,即每个主成分中各个原始变量的系数(载荷)。通过载荷图,我们可以了解每个主成分代表了哪些原始特征的信息。 6. 双图(Biplot):双图是一种用于展示PCA结果的图形,它同时显示了样本点和变量点。样本点在主成分空间中的位置表示样本的主成分得分,而变量点则表示原始变量在主成分空间中的载荷。 7. MATLAB中的标签使用:在MATLAB中,标签(Label)通常用于标记图形中的元素,比如坐标轴、图例、文本等。通过使用标签,可以使图形更加清晰和易于理解。 8. ObsLabels的使用:在MATLAB中,ObsLabels用于定义观察对象的标签。在绘制图形时,可以通过ObsLabels为每个样本点添加文本标签,以便于识别。 9. 导入Excel数据:MATLAB提供了工具和函数,用于将Excel文件中的数据导入到MATLAB环境。这对于分析存储在Excel表格中的数据非常有用。 10. 压缩包子文件:这里的"压缩包子文件"可能是一个误译或者打字错误,实际上应该是指一个包含代码的压缩文件包(Zip file)。文件名为PCA_IrisSetosa_sep28_1110pm.zip,表明这是一个包含了PCA分析Iris Setosa数据集的MATLAB代码压缩包,创建时间为2021年9月28日晚上11点10分。 代码可能包含的步骤和操作包括: - 加载数据:从Excel表格中读取数据。 - 数据预处理:为数据点编号,准备标签。 - PCA计算:执行PCA算法,得到特征向量和特征值。 - 结果可视化:使用MATLAB的绘图函数绘制帕累托图、载荷图和双图。 - 标签应用:在图形中用标签标记样本点。 - 代码改进:寻求方法将样本编号与双图中的符号同时显示。 这段代码为数据科学家和学生提供了一个很好的PCA应用实例,有助于深入理解PCA的实际应用以及如何在MATLAB中进行数据分析和可视化。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【R语言深度学习】:keras和tensorflow带你进入AI世界

![【R语言深度学习】:keras和tensorflow带你进入AI世界](https://opengraph.githubassets.com/efb880e2026ddff3141a65a02e45b2d2498440e1920a6f7f26bd41f37f0108db/claCase/Classification-with-Keras-in-R) # 1. 深度学习与AI简介 深度学习作为人工智能(AI)的一个重要分支,近年来在图像识别、语音处理、自然语言处理等领域取得了重大突破。本章将对深度学习的概念进行概述,并解释它与传统机器学习的区别,最后展望AI技术的发展趋势及挑战。 ##
recommend-type

如何使用C语言中的分支结构(如if-else语句)来比较两个整数x和y,并根据比较结果按从小到大的顺序输出他们的值

在C语言中,你可以使用if-else语句结合条件运算符(?:)来比较两个整数x和y并按照指定的顺序输出。以下是一个简单的示例: ```c #include <stdio.h> int main() { int x, y; // 假设已经给x和y赋了值 if (x <= y) { // 如果x小于等于y printf("The smaller number is: %d\n", x); } else { // 否则 printf("The smaller number is: %d\n", y); // 输出较大的数 }
recommend-type

深入理解JavaScript类与面向对象编程

资源摘要信息:"JavaScript-Classes-OOP" JavaScript中的类是自ES6(ECMAScript 2015)引入的特性,它提供了一种创建构造函数和对象的新语法。类可以看作是创建和管理对象的蓝图或模板。JavaScript的类实际上是基于原型继承的语法糖,这使得基于原型的继承看起来更像传统的面向对象编程(OOP)语言,如Java或C++。 面向对象编程(OOP)是一种编程范式,它使用“对象”来设计应用和计算机程序。在OOP中,对象可以包含数据和代码,这些代码称为方法。对象中的数据通常被称为属性。OOP的关键概念包括类、对象、继承、多态和封装。 JavaScript类的创建和使用涉及以下几个关键点: 1. 类声明和类表达式:类可以通过类声明和类表达式两种形式来创建。类声明使用`class`关键字,后跟类名。类表达式可以是命名的也可以是匿名的。 ```javascript // 类声明 class Rectangle { constructor(height, width) { this.height = height; this.width = width; } } // 命名类表达式 const Square = class Square { constructor(sideLength) { this.sideLength = sideLength; } }; ``` 2. 构造函数:在JavaScript类中,`constructor`方法是一个特殊的方法,用于创建和初始化类创建的对象。一个类只能有一个构造函数。 3. 继承:继承允许一个类继承另一个类的属性和方法。在JavaScript中,可以使用`extends`关键字来创建一个类,该类继承自另一个类。被继承的类称为超类(superclass),继承的类称为子类(subclass)。 ```javascript class Animal { constructor(name) { this.name = name; } speak() { console.log(`${this.name} makes a noise.`); } } class Dog extends Animal { speak() { console.log(`${this.name} barks.`); } } ``` 4. 类的方法:在类内部可以定义方法,这些方法可以直接写在类的主体中。类的方法可以使用`this`关键字访问对象的属性。 5. 静态方法和属性:在类内部可以定义静态方法和静态属性。这些方法和属性只能通过类本身来访问,而不能通过实例化对象来访问。 ```javascript class Point { constructor(x, y) { this.x = x; this.y = y; } static distance(a, b) { const dx = a.x - b.x; const dy = a.y - b.y; return Math.sqrt(dx * dx + dy * dy); } } const p1 = new Point(5, 5); const p2 = new Point(10, 10); console.log(Point.distance(p1, p2)); // 输出:7.071... ``` 6. 使用new关键字创建实例:通过使用`new`关键字,可以基于类的定义创建一个新对象。 ```javascript const rectangle = new Rectangle(20, 10); ``` 7. 类的访问器属性:可以为类定义获取(getter)和设置(setter)访问器属性,允许你在获取和设置属性值时执行代码。 ```javascript class Temperature { constructor(celsius) { this.celsius = celsius; } get fahrenheit() { return this.celsius * 1.8 + 32; } set fahrenheit(value) { this.celsius = (value - 32) / 1.8; } } ``` JavaScript类和OOP的概念不仅限于上述这些,还包括如私有方法和属性、类字段(字段简写和计算属性名)等其他特性。这些特性有助于实现封装、信息隐藏等面向对象的特性,使得JavaScript的面向对象编程更加灵活和强大。随着JavaScript的发展,类和OOP的支持在不断地改进和增强,为开发者提供了更多编写高效、可维护和可扩展代码的工具。