import torch import os import torch.nn as nn import torch.optim as optim import numpy as np import random import matplotlib.pyplot as plt class Net(nn.Module): def init(self): super(Net, self).init() self.conv1 = nn.Conv2d(1, 16, kernel_size=3,stride=1) self.pool = nn.MaxPool2d(kernel_size=2,stride=2) self.conv2 = nn.Conv2d(16, 32, kernel_size=3,stride=1) self.fc1 = nn.Linear(32 * 9 * 9, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 2) def forward(self, x): x = self.pool(nn.functional.relu(self.conv1(x))) x = self.pool(nn.functional.relu(self.conv2(x))) x = x.view(-1, 32 * 9 * 9) x = nn.functional.relu(self.fc1(x)) x = nn.functional.relu(self.fc2(x)) x = self.fc3(x) return x net = Net() criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) folder_path1 = 'random_matrices2' # 创建空的tensor x = torch.empty((40, 1, 42, 42)) # 遍历文件夹内的文件,将每个矩阵转化为tensor并存储 for j in range(40): for j in range(40): file_name = 'matrix_{}.npy'.format(i) file_path1 = os.path.join(folder_path1, file_name) matrix1 = np.load(file_path1) x[j] = torch.from_numpy(matrix1).unsqueeze(0) folder_path2 = 'random_label2' y = torch.empty((40, )) for k in range(40): for k in range(40): file_name = 'label_{}.npy'.format(i) file_path2 = os.path.join(folder_path2, file_name) matrix2 = np.load(file_path2) y[k] = torch.from_numpy(matrix2) losses = [] for epoch in range(10): running_loss = 0.0 for i in range(40): inputs, labels = x[i], y[i] optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() losses.append(running_loss / 40) print('[%d] loss: %.3f' % (epoch + 1, running_loss / 40)) print('Finished Training') plt.plot(losses) plt.xlabel('Epoch') plt.ylabel('Loss') plt.show() 报错:ValueError: Expected input batch_size (1) to match target batch_size (0). 怎么修改?
时间: 2023-12-09 21:06:51 浏览: 81
这个错误提示意味着你的标签张量 `y` 的形状不正确,需要和输出张量 `outputs` 的形状匹配。在你的代码中,`y` 的形状应该是 `(40,)`,但是在模型输出时,它的形状是 `(1, 2)`。
你可以尝试将标签张量 `y` 的形状修改为 `(40, 1)`,以便与模型输出的形状 `(40, 2)` 匹配。具体地,你可以在加载标签数据时使用以下代码:
```
y[k] = torch.from_numpy(matrix2).unsqueeze(0)
```
这样可以将形状为 `(1,)` 的标签张量变为形状为 `(1, 1)` 的张量,使其与模型输出的形状 `(1, 2)` 匹配。然后,在训练模型时,你需要将标签张量 `y` 的维度降低一维,以便与输出张量 `outputs` 的形状 `(1, 2)` 匹配:
```
loss = criterion(outputs, labels.squeeze(1))
```
这样就可以避免 `ValueError: Expected input batch_size (1) to match target batch_size (0)` 的错误了。
相关问题
import torch import os import torch.nn as nn import torch.optim as optim import numpy as np import random import matplotlib.pyplot as plt class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 16, kernel_size=3,stride=1) self.pool = nn.MaxPool2d(kernel_size=2,stride=2) self.conv2 = nn.Conv2d(16, 32, kernel_size=3,stride=1) self.fc1 = nn.Linear(32 * 9 * 9, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 2) def forward(self, x): x = self.pool(nn.functional.relu(self.conv1(x))) x = self.pool(nn.functional.relu(self.conv2(x))) x = x.view(-1, 32 * 9 * 9) x = nn.functional.relu(self.fc1(x)) x = nn.functional.relu(self.fc2(x)) x = self.fc3(x) return x net = Net() criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) folder_path1 = 'random_matrices2' # 创建空的tensor x = torch.empty((40, 1, 42, 42)) # 遍历文件夹内的文件,将每个矩阵转化为tensor并存储 for j in range(40): for j in range(40): file_name = 'matrix_{}.npy'.format(i) file_path1 = os.path.join(folder_path1, file_name) matrix1 = np.load(file_path1) x[j] = torch.from_numpy(matrix1).unsqueeze(0) folder_path2 = 'random_label2' y = torch.empty((40, 1)) for k in range(40): for k in range(40): file_name = 'label_{}.npy'.format(i) file_path2 = os.path.join(folder_path2, file_name) matrix2 = np.load(file_path2) y[k] = torch.from_numpy(matrix2).unsqueeze(0) losses = [] for epoch in range(10): running_loss = 0.0 for i in range(40): inputs, labels = x[i], y[i] optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() losses.append(running_loss / 40) print('[%d] loss: %.3f' % (epoch + 1, running_loss / 40)) print('Finished Training') plt.plot(losses) plt.xlabel('Epoch') plt.ylabel('Loss') plt.show() 报错:
在第14行的for循环中,两个变量的名字都是j,应该将其中一个改为k。此外,在第19行的for循环中,变量i并未定义,应该将其改为k。最后,在第28行的loss.backward()中,需要将labels从tensor类型转换为long类型,即loss.backward()改为loss.backward(torch.tensor([1], dtype=torch.long)). 修改后的代码如下:
```
import torch
import os
import torch.nn as nn
import torch.optim as optim
import numpy as np
import random
import matplotlib.pyplot as plt
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 16, kernel_size=3,stride=1)
self.pool = nn.MaxPool2d(kernel_size=2,stride=2)
self.conv2 = nn.Conv2d(16, 32, kernel_size=3,stride=1)
self.fc1 = nn.Linear(32 * 9 * 9, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 2)
def forward(self, x):
x = self.pool(nn.functional.relu(self.conv1(x)))
x = self.pool(nn.functional.relu(self.conv2(x)))
x = x.view(-1, 32 * 9 * 9)
x = nn.functional.relu(self.fc1(x))
x = nn.functional.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
folder_path1 = 'random_matrices2'
# 创建空的tensor
x = torch.empty((40, 1, 42, 42))
# 遍历文件夹内的文件,将每个矩阵转化为tensor并存储
for j in range(40):
file_name = 'matrix_{}.npy'.format(j)
file_path1 = os.path.join(folder_path1, file_name)
matrix1 = np.load(file_path1)
x[j] = torch.from_numpy(matrix1).unsqueeze(0)
folder_path2 = 'random_label2'
y = torch.empty((40,))
# 遍历文件夹内的文件,将每个标签转化为tensor并存储
for k in range(40):
file_name = 'label_{}.npy'.format(k)
file_path2 = os.path.join(folder_path2, file_name)
matrix2 = np.load(file_path2)
y[k] = torch.from_numpy(matrix2)
losses = []
for epoch in range(10):
running_loss = 0.0
for i in range(40):
inputs, labels = x[i], y[i].long()
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward(torch.tensor([1], dtype=torch.long))
optimizer.step()
running_loss += loss.item()
losses.append(running_loss / 40)
print('[%d] loss: %.3f' % (epoch + 1, running_loss / 40))
print('Finished Training')
plt.plot(losses)
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.show()
```
解释一下代码import matplotlib.pyplot as plt import numpy as np import torch import torch.utils.data.dataloader as Loader import torchvision import torchvision.transforms as transforms import torch.nn as nn import torch.nn.functional as F import torch.op
这段代码是在Python中导入一些常用的机器学习和深度学习的库,其中包括:
1. matplotlib.pyplot:用于绘制数据可视化图表的库。
2. numpy:用于数值计算的库。
3. torch:PyTorch深度学习框架的主要库。
4. torch.utils.data.dataloader:用于数据加载和预处理的库。
5. torchvision:PyTorch的图像处理库。
6. torchvision.transforms:用于对图像进行转换和预处理的库。
7. torch.nn:PyTorch的神经网络模块库。
8. torch.nn.functional:PyTorch的神经网络函数库。
9. torch.optim:PyTorch的优化器库。
通过导入这些库,我们可以在Python中方便地进行深度学习的模型构建和数据处理。
阅读全文