import torch import torch.nn as nn from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error import torch.optim as optim import matplotlib.pyplot as plt # 划分特征值和预测值并转换为numpy数据 X = df.iloc[:,:-1].values y = df.iloc[:,-1].values # 划分训练集和测试集 X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=0) ## 开始进行数据回归分析 # 将数据转换为张量 X_train = torch.from_numpy(X_train).float() X_test = torch.from_numpy(X_test).float() y_train = torch.from_numpy(y_train).float() y_test = torch.from_numpy(y_test).float() torch.manual_seed(0) # 定义模型 class Net(nn.Module): def __init__(self): super(Net,self).__init__() self.fc1=nn.Linear(3,10) self.fc2=nn.Linear(10,1) def forward(self, x): x=self.fc1(x) x=torch.relu(x) x=self.fc2(x) return x net = Net() # 定义损失函数和优化器 criterion = nn.MSELoss() optimizer = optim.Adam(net.parameters(),lr=0.07)这里面用的是什么神经网络模型

时间: 2024-04-27 09:22:39 浏览: 7
这里使用的是一个简单的前馈神经网络模型,包含一个输入层、一个隐藏层和一个输出层。其中,输入层的神经元数量为 3,因为特征值有 3 个;隐藏层的神经元数量为 10,可以通过修改代码中 `self.fc1=nn.Linear(3,10)` 中的参数来调整;输出层的神经元数量为 1,因为预测值只有一个。使用的激活函数是 ReLU 函数,在隐藏层中使用。损失函数使用的是均方误差(MSE)函数,优化器使用的是 Adam 优化算法,学习率为 0.07。
相关问题

使用housing_renamed.csv中的数据构建两个不同的神经网络模型预测value_per_sq_ft:使用3折交叉验证来评价这两个不同的模型的好坏,要求使用torch

好的,这是基于 PyTorch 实现的代码: ```python import torch import torch.nn as nn import torch.optim as optim import pandas as pd from sklearn.model_selection import KFold from sklearn.metrics import mean_squared_error # 加载数据集 data = pd.read_csv("housing_renamed.csv") # 分为特征和目标变量 X = data.drop("value_per_sq_ft", axis=1).values y = data["value_per_sq_ft"].values # 定义神经网络模型 class Model1(nn.Module): def __init__(self, input_size): super(Model1, self).__init__() self.fc1 = nn.Linear(input_size, 10) self.fc2 = nn.Linear(10, 1) def forward(self, x): x = torch.relu(self.fc1(x)) x = self.fc2(x) return x class Model2(nn.Module): def __init__(self, input_size): super(Model2, self).__init__() self.fc1 = nn.Linear(input_size, 20) self.fc2 = nn.Linear(20, 10) self.fc3 = nn.Linear(10, 1) def forward(self, x): x = torch.relu(self.fc1(x)) x = torch.relu(self.fc2(x)) x = self.fc3(x) return x # 定义模型训练函数 def train(model, optimizer, criterion, X_train, y_train): model.train() optimizer.zero_grad() y_pred = model(torch.Tensor(X_train)) loss = criterion(y_pred, torch.Tensor(y_train).unsqueeze(1)) loss.backward() optimizer.step() # 定义 KFold 参数 kfold = KFold(n_splits=3, shuffle=True, random_state=42) # 定义模型评价指标 mse_scores1 = [] mse_scores2 = [] # 对每个 fold 进行训练和评价 for train_idx, test_idx in kfold.split(X): # 获取训练和测试数据 X_train, X_test = X[train_idx], X[test_idx] y_train, y_test = y[train_idx], y[test_idx] # 定义模型和优化器 model1 = Model1(X_train.shape[1]) optimizer1 = optim.Adam(model1.parameters(), lr=0.01) criterion1 = nn.MSELoss() model2 = Model2(X_train.shape[1]) optimizer2 = optim.Adam(model2.parameters(), lr=0.01) criterion2 = nn.MSELoss() # 训练第一个模型 for epoch in range(50): train(model1, optimizer1, criterion1, X_train, y_train) y_pred1 = model1(torch.Tensor(X_test)).detach().numpy() mse_scores1.append(mean_squared_error(y_test, y_pred1)) # 训练第二个模型 for epoch in range(50): train(model2, optimizer2, criterion2, X_train, y_train) y_pred2 = model2(torch.Tensor(X_test)).detach().numpy() mse_scores2.append(mean_squared_error(y_test, y_pred2)) # 输出模型评价指标 print("Model 1 MSE Scores:", mse_scores1) print("Model 1 Average MSE Score:", sum(mse_scores1) / len(mse_scores1)) print("Model 2 MSE Scores:", mse_scores2) print("Model 2 Average MSE Score:", sum(mse_scores2) / len(mse_scores2)) ``` 在这个版本的代码中,我们使用 PyTorch 定义了两个神经网络模型,并采用了类似的训练和评价过程。我们使用 MSE(均方误差)作为损失函数,Adam 优化器用于优化模型权重。在训练过程中,我们使用 detach() 方法分离了输出张量和计算图,以便在评价时使用 NumPy 计算 MSE。 希望这可以帮助到你!

pytorch_lightning metric

### 回答1: PyTorch Lightning Metric 是 PyTorch Lightning 中用于评估模型性能的一种工具。Metric 可以用于监控训练过程中的指标,并在每个 epoch 结束时输出结果。PyTorch Lightning Metric 提供了多种内置的评估指标,如 accuracy、precision、recall、F1 等,并且可以自定义评估指标。 使用 PyTorch Lightning Metric 的基本步骤如下: 1. 定义 Metric 类,继承自 `pl.metrics.Metric` 2. 在类中实现 `update` 方法,用于更新评估指标 3. 在类中实现 `compute` 方法,用于计算最终的评估结果 4. 在 LightningModule 中使用 `self.log()` 方法输出评估结果 例如,下面是一个计算 accuracy 的 Metric 类的示例代码: ```python import torch import pytorch_lightning as pl class Accuracy(pl.metrics.Metric): def __init__(self, dist_sync_on_step=False): super().__init__(dist_sync_on_step=dist_sync_on_step) self.add_state("correct", default=torch.tensor(0), dist_reduce_fx="sum") self.add_state("total", default=torch.tensor(0), dist_reduce_fx="sum") def update(self, preds, target): preds = torch.argmax(preds, dim=1) self.correct += torch.sum(preds == target) self.total += target.numel() def compute(self): return self.correct.float() / self.total ``` 在 LightningModule 中使用该 Metric 可以如下使用: ```python class MyModel(pl.LightningModule): def __init__(self): super().__init__() self.accuracy = Accuracy() def training_step(self, batch, batch_idx): ... self.accuracy(preds, target) ... def training_epoch_end(self, outputs): ... self.log('train_acc', self.accuracy.compute(), on_step=False, on_epoch=True) ... ``` 在每个 epoch 结束时,`self.accuracy.compute()` 方法将计算 accuracy 并返回最终的评估结果。`self.log()` 方法用于输出评估结果,其中 `on_epoch=True` 表示只在每个 epoch 结束时输出,而不是每个 batch 结束时都输出。 ### 回答2: PyTorch Lightning是一个轻量级而强大的深度学习框架,提供了许多指标(metric)来帮助我们评估模型的性能。这些指标可以帮助我们了解训练过程中模型的表现,从而对模型进行改进和优化。 PyTorch Lightning中的指标(metric)可以分为两类:训练指标和验证指标。训练指标是针对训练阶段的评估,而验证指标则是在验证阶段对模型进行评估。 常见的训练指标包括准确率(Accuracy)和损失(Loss)。准确率可以衡量模型在训练集上的分类预测准确性,而损失则可以衡量模型的学习效果。PyTorch Lightning提供了内置的函数来计算这些指标,使得评估过程更加方便。 此外,PyTorch Lightning还提供了丰富的验证指标。常见的验证指标包括精确度(Precision)、召回率(Recall)和F1-score。这些指标可以帮助我们更全面地了解模型在验证集上的性能表现。PyTorch Lightning也提供了内置的函数来计算这些指标。 对于更复杂的模型评估需求,PyTorch Lightning还可以自定义指标。我们可以通过继承`torchmetrics.Metric`类来定义自己的指标函数,并在训练或验证过程中使用这些指标。 总之,PyTorch Lightning提供了丰富的指标来帮助我们评估模型的性能。无论是训练指标还是验证指标,这些指标都能够帮助我们更好地了解模型的表现,并且能够进行自定义来满足特定的评估需求。 ### 回答3: PyTorch Lightning是一个针对PyTorch的轻量级深度学习框架,它提供了一种易于使用的方式来组织和管理训练代码。在PyTorch Lightning中,Metric(度量指标)是一个用于评估模型性能的重要组成部分。 PyTorch Lightning Metric的主要作用是衡量模型在训练和验证过程中的性能。它提供了一种标准化的方式来计算和跟踪诸如准确率、损失、F1分数等指标。使用Metric能够帮助我们更好地理解和衡量模型的表现。 PyTorch Lightning预定义了一些常见的Metric,如Accuracy、Precision、Recall、F1、Mean Squared Error等。使用这些预定义的Metric,我们只需简单地实例化并传递给Lightning Module,再通过训练循环使用update方法来更新Metric的值。例如,我们可以在每个训练批次和验证结束后计算Accuracy,并跟踪模型在训练过程中的性能。 此外,PyTorch Lightning还支持自定义Metric,我们可以根据实际需求定义自己的Metric函数。实现自定义Metric函数时,我们需要定义`__init__`方法、`update`方法和`compute`方法。`__init__`方法用于初始化Metric的变量,`update`方法用于根据模型预测结果和真实标签更新Metric的值,`compute`方法用于计算Metric最终的结果。 总结来说,PyTorch Lightning Metric是一种用于评估模型性能的工具,它提供了一种标准化的方式来计算和跟踪模型的性能指标。它可以帮助我们更好地理解和衡量模型的表现,并且可以方便地使用预定义的指标或自定义的指标来评估模型。

相关推荐

最新推荐

recommend-type

setuptools-58.0.3.tar.gz

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

变压器DGA溶解气体数据(357组)

包含六种故障类型: 中低温过热 高温过热 低能放电 高能放电 局部放电 正常 111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111需要直接下载就可
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

用matlab绘制高斯色噪声情况下的频率估计CRLB,其中w(n)是零均值高斯色噪声,w(n)=0.8*w(n-1)+e(n),e(n)服从零均值方差为se的高斯分布

以下是用matlab绘制高斯色噪声情况下频率估计CRLB的代码: ```matlab % 参数设置 N = 100; % 信号长度 se = 0.5; % 噪声方差 w = zeros(N,1); % 高斯色噪声 w(1) = randn(1)*sqrt(se); for n = 2:N w(n) = 0.8*w(n-1) + randn(1)*sqrt(se); end % 计算频率估计CRLB fs = 1; % 采样频率 df = 0.01; % 频率分辨率 f = 0:df:fs/2; % 频率范围 M = length(f); CRLB = zeros(M,1); for
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

python中从Excel中取的列没有了0

可能是因为Excel中的列被格式化为数字,而数字前导的0被省略了。可以在Excel中将列的格式更改为文本,这样就会保留数字前导的0。另外,在Python中读取Excel时,可以将列的数据类型指定为字符串,这样就可以保留数字前导的0。例如: ```python import pandas as pd # 读取Excel文件 df = pd.read_excel('data.xlsx', dtype={'列名': str}) # 输出列数据 print(df['列名']) ``` 其中,`dtype={'列名': str}`表示将列名为“列名”的列的数据类型指定为字符串。