GBDT分类模型的参数
时间: 2023-10-23 07:40:53 浏览: 137
hyperparameter-tuning-benchmark:调整GBDT算法的超参数优化方法基准
GBDT(Gradient Boosting Decision Tree)分类模型的参数包括:
1. n_estimators:决策树的数量,也就是迭代次数,通常需要调参确定。
2. learning_rate:学习率,控制每个决策树的权重缩放比例,通常需要调参确定。
3. max_depth:决策树的最大深度,防止过拟合,通常需要调参确定。
4. min_samples_split:内部节点再划分所需最小样本数,也是为了防止过拟合,通常需要调参确定。
5. min_samples_leaf:叶子节点最少的样本数,也是为了防止过拟合,通常需要调参确定。
6. max_features:寻找最佳划分时考虑的特征数,通常需要调参确定。
7. loss:损失函数类型,通常为分类问题选择“deviance”。
这些参数可以通过交叉验证等方法来确定最优值。
阅读全文