用51单片机,使用矩阵键盘作为输入,设计一个倒计时装置。可用矩阵键盘S1-S9键输入1-500秒的倒计时,S10键启动倒计时,S11键重置。倒计时可以用数码管显示,倒计时结束后,数码管显示全0。

时间: 2023-06-27 11:02:17 浏览: 235
这个倒计时装置的实现可以分为以下几个步骤: 1. 矩阵键盘的输入检测和处理:使用4行3列的矩阵键盘,对应P1.0-P1.3为行,P1.4-P1.6为列。扫描键盘时,先将所有列置高电平,然后循环将每一行置低电平,检测每列是否有按键按下。如果有按键按下,则记录下按键对应的数字(1-9),或者启动倒计时(S10键),或者重置(S11键)。 2. 倒计时的计算和显示:将按下的数字累加到倒计时总秒数中,然后每秒钟递减1,直到计数器归零。倒计时过程中,将计数器的值转换为BCD码,然后依次显示在4位共阳数码管上。 3. 重置功能的实现:将倒计时总秒数清零,并将数码管显示全0。 下面是详细的程序代码实现: ```c #include <reg52.h> // 数码管位选和段选定义 sbit DIG1 = P0^0; sbit DIG2 = P0^1; sbit DIG3 = P0^2; sbit DIG4 = P0^3; sbit SEG_A = P2^0; sbit SEG_B = P2^1; sbit SEG_C = P2^2; sbit SEG_D = P2^3; sbit SEG_E = P2^4; sbit SEG_F = P2^5; sbit SEG_G = P2^6; sbit SEG_DP = P2^7; // 矩阵键盘定义 sbit KBD_ROW1 = P1^0; sbit KBD_ROW2 = P1^1; sbit KBD_ROW3 = P1^2; sbit KBD_ROW4 = P1^3; sbit KBD_COL1 = P1^4; sbit KBD_COL2 = P1^5; sbit KBD_COL3 = P1^6; // 常量定义 #define KEY_NONE 0 #define KEY_S1 1 #define KEY_S2 2 #define KEY_S3 3 #define KEY_S4 4 #define KEY_S5 5 #define KEY_S6 6 #define KEY_S7 7 #define KEY_S8 8 #define KEY_S9 9 #define KEY_START 10 #define KEY_RESET 11 #define MAX_COUNT 500 // 变量定义 unsigned int count; // 倒计时总秒数 unsigned char key; // 当前按下的键值 unsigned char disp[4]; // 数码管显示的BCD码 // 函数声明 void delayms(unsigned int ms); void kbd_scan(void); unsigned char kbd_get_key(void); void disp_update(void); void count_down(void); // 主函数 void main() { // 初始化 count = 0; key = KEY_NONE; disp[0] = 0; disp[1] = 0; disp[2] = 0; disp[3] = 0; while (1) { // 检测键盘输入 kbd_scan(); // 处理键盘输入 if (key != KEY_NONE) { switch (key) { case KEY_START: count_down(); break; case KEY_RESET: count = 0; disp[0] = 0; disp[1] = 0; disp[2] = 0; disp[3] = 0; break; default: if (count < MAX_COUNT) { count += key; if (count > MAX_COUNT) { count = MAX_COUNT; } disp_update(); } break; } key = KEY_NONE; } } } // 延时函数,1ms void delayms(unsigned int ms) { unsigned int i, j; for (i = 0; i < ms; i++) { for (j = 0; j < 110; j++); } } // 扫描键盘,检测当前按下的键值 void kbd_scan(void) { unsigned char row; unsigned char col; unsigned char k; for (col = 0; col < 3; col++) { // 将列置高电平 switch (col) { case 0: KBD_COL1 = 1; KBD_COL2 = 0; KBD_COL3 = 0; break; case 1: KBD_COL1 = 0; KBD_COL2 = 1; KBD_COL3 = 0; break; case 2: KBD_COL1 = 0; KBD_COL2 = 0; KBD_COL3 = 1; break; } // 检测每一行是否有按键按下 for (row = 0; row < 4; row++) { switch (row) { case 0: KBD_ROW1 = 0; KBD_ROW2 = 1; KBD_ROW3 = 1; KBD_ROW4 = 1; break; case 1: KBD_ROW1 = 1; KBD_ROW2 = 0; KBD_ROW3 = 1; KBD_ROW4 = 1; break; case 2: KBD_ROW1 = 1; KBD_ROW2 = 1; KBD_ROW3 = 0; KBD_ROW4 = 1; break; case 3: KBD_ROW1 = 1; KBD_ROW2 = 1; KBD_ROW3 = 1; KBD_ROW4 = 0; break; } // 检测当前行是否有按键按下 if (KBD_COL1 == 0 || KBD_COL2 == 0 || KBD_COL3 == 0) { delayms(10); // 延时去抖 if (KBD_COL1 == 0 || KBD_COL2 == 0 || KBD_COL3 == 0) { // 记录按键值 k = row * 3 + col + 1; if (k <= 9) { key = k; } else if (k == 10) { key = KEY_START; } else if (k == 11) { key = KEY_RESET; } return; } } } } key = KEY_NONE; } // 获取当前按下的键值 unsigned char kbd_get_key(void) { unsigned char k; do { kbd_scan(); } while (key == KEY_NONE); k = key; key = KEY_NONE; return k; } // 更新数码管显示 void disp_update(void) { unsigned int t = count; disp[0] = t % 10; t /= 10; disp[1] = t % 10; t /= 10; disp[2] = t % 10; t /= 10; disp[3] = t % 10; } // 倒计时函数 void count_down(void) { unsigned int i; while (count > 0) { disp_update(); delayms(1000); // 延时1秒 count--; } disp[0] = 0; disp[1] = 0; disp[2] = 0; disp[3] = 0; } ``` 需要注意的是,由于51单片机没有内置的定时器,所以倒计时的实现采用了延时函数。这种方法的精度较低,倒计时过程中可能会有一些误差。如果需要更高的精度,可以考虑使用外部定时器或者RTC芯片来实现倒计时功能。
阅读全文

相关推荐

最新推荐

recommend-type

单片机键盘程序(4×4矩阵式)

单片机键盘程序(4×4矩阵式)设计:用AT89S51的并行口P1接4×4矩阵键盘,以P1.0-P1.3作输入线,以P1.4-P1.7作输出线;在数码管上显示每个按键的“0-F”序号。 在这个设计中,我们使用了AT89S51单片机作为控制器...
recommend-type

用软件延时实现00-59秒单片机计时器

在本设计中,我们使用一个存储单元作为秒计数单元,当一秒钟到来时,就让秒计数单元加1,当秒计数达到60时,就自动返回到0,从新秒计数。我们可以使用CJNE A,#60,NEXTLJMP START来实现秒计数单元的自动返回。 知识...
recommend-type

利用矩阵键盘控制51单片机LCD12864显示的数字时钟

在本设计中,经过对比分析,最终确定了以51单片机为核心,LCD12864为显示设备,矩阵键盘为控制输入的方案三。这一方案的优点在于能够利用单片机丰富的内部资源,简化电路设计,提高系统集成度,并且具有较好的可扩展...
recommend-type

基于MCS-51单片机的断相与相序保护系统的设计

基于MCS-51单片机的断相与相序保护系统的设计 本文介绍了一种简单实用的数字式断相与相序保护技术的原理,给出了基于MCS—51单片机的断相与相序保护数字控制系统的硬件电路及简单软件介绍,实现了三相交流控制系统...
recommend-type

4X4矩阵按键的使用方法

4X4矩阵按键是单片机系统中常见的人机交互接口,尤其在资源有限的情况下,它的使用能够有效地节省I/O端口。这种键盘布局由16个按键组成,通过纵横交错的线路连接到单片机的输入/输出(IO)口,通常只需要8个I/O口就...
recommend-type

JavaScript实现的高效pomodoro时钟教程

资源摘要信息:"JavaScript中的pomodoroo时钟" 知识点1:什么是番茄工作法 番茄工作法是一种时间管理技术,它是由弗朗西斯科·西里洛于1980年代末发明的。该技术使用一个定时器来将工作分解为25分钟的块,这些时间块之间短暂休息。每个时间块被称为一个“番茄”,因此得名“番茄工作法”。该技术旨在帮助人们通过短暂的休息来提高集中力和生产力。 知识点2:JavaScript是什么 JavaScript是一种高级的、解释执行的编程语言,它是网页开发中最主要的技术之一。JavaScript主要用于网页中的前端脚本编写,可以实现用户与浏览器内容的交云互动,也可以用于服务器端编程(Node.js)。JavaScript是一种轻量级的编程语言,被设计为易于学习,但功能强大。 知识点3:使用JavaScript实现番茄钟的原理 在使用JavaScript实现番茄钟的过程中,我们需要用到JavaScript的计时器功能。JavaScript提供了两种计时器方法,分别是setTimeout和setInterval。setTimeout用于在指定的时间后执行一次代码块,而setInterval则用于每隔一定的时间重复执行代码块。在实现番茄钟时,我们可以使用setInterval来模拟每25分钟的“番茄时间”,使用setTimeout来控制每25分钟后的休息时间。 知识点4:如何在JavaScript中设置和重置时间 在JavaScript中,我们可以使用Date对象来获取和设置时间。Date对象允许我们获取当前的日期和时间,也可以让我们创建自己的日期和时间。我们可以通过new Date()创建一个新的日期对象,并使用Date对象提供的各种方法,如getHours(), getMinutes(), setHours(), setMinutes()等,来获取和设置时间。在实现番茄钟的过程中,我们可以通过获取当前时间,然后加上25分钟,来设置下一个番茄时间。同样,我们也可以通过获取当前时间,然后减去25分钟,来重置上一个番茄时间。 知识点5:实现pomodoro-clock的基本步骤 首先,我们需要创建一个定时器,用于模拟25分钟的工作时间。然后,我们需要在25分钟结束后提醒用户停止工作,并开始短暂的休息。接着,我们需要为用户的休息时间设置另一个定时器。在用户休息结束后,我们需要重置定时器,开始下一个工作周期。在这个过程中,我们需要为每个定时器设置相应的回调函数,以处理定时器触发时需要执行的操作。 知识点6:使用JavaScript实现pomodoro-clock的优势 使用JavaScript实现pomodoro-clock的优势在于JavaScript的轻量级和易学性。JavaScript作为前端开发的主要语言,几乎所有的现代浏览器都支持JavaScript。因此,我们可以很容易地在网页中实现pomodoro-clock,用户只需要打开网页即可使用。此外,JavaScript的灵活性也使得我们可以根据需要自定义pomodoro-clock的各种参数,如工作时间长度、休息时间长度等。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【WebLogic客户端兼容性提升秘籍】:一站式解决方案与实战案例

![WebLogic](https://docs.oracle.com/cd/F28299_01/pt857pbr3/eng/pt/tsvt/img/ia2cf27cn-7b68.png) # 摘要 WebLogic作为一款广泛使用的中间件产品,其客户端兼容性对于企业应用至关重要。本文从基本概念出发,系统地介绍了WebLogic的架构、组件以及兼容性问题的分类和影响。通过深入分析兼容性测试方法和诊断分析技术,探讨了如何有效地识别和解决客户端兼容性问题。进一步,本文提出了提升兼容性的策略,包括代码层面的设计、配置管理、补丁升级以及快速响应流程。最后,结合实战案例,本文详细说明了解决方案的实施过
recommend-type

使用jupyter读取文件“近5年考试人数.csv”,绘制近5年高考及考研人数发展趋势图,数据如下(单位:万人)。

在Jupyter Notebook中读取CSV文件并绘制图表,通常需要几个步骤: 1. 首先,你需要导入必要的库,如pandas用于数据处理,matplotlib或seaborn用于数据可视化。 ```python import pandas as pd import matplotlib.pyplot as plt ``` 2. 使用`pd.read_csv()`函数加载CSV文件: ```python df = pd.read_csv('近5年考试人数.csv') ``` 3. 确保数据已经按照年份排序,如果需要的话,可以添加这一行: ```python df = df.sor
recommend-type

CMake 3.25.3版本发布:程序员必备构建工具

资源摘要信息:"Cmake-3.25.3.zip文件是一个包含了CMake软件版本3.25.3的压缩包。CMake是一个跨平台的自动化构建系统,用于管理软件的构建过程,尤其是对于C++语言开发的项目。CMake使用CMakeLists.txt文件来配置项目的构建过程,然后可以生成不同操作系统的标准构建文件,如Makefile(Unix系列系统)、Visual Studio项目文件等。CMake广泛应用于开源和商业项目中,它有助于简化编译过程,并支持生成多种开发环境下的构建配置。 CMake 3.25.3版本作为该系列软件包中的一个点,是CMake的一个稳定版本,它为开发者提供了一系列新特性和改进。随着版本的更新,3.25.3版本可能引入了新的命令、改进了用户界面、优化了构建效率或解决了之前版本中发现的问题。 CMake的主要特点包括: 1. 跨平台性:CMake支持多种操作系统和编译器,包括但不限于Windows、Linux、Mac OS、FreeBSD、Unix等。 2. 编译器独立性:CMake生成的构建文件与具体的编译器无关,允许开发者在不同的开发环境中使用同一套构建脚本。 3. 高度可扩展性:CMake能够使用CMake模块和脚本来扩展功能,社区提供了大量的模块以支持不同的构建需求。 4. CMakeLists.txt:这是CMake的配置脚本文件,用于指定项目源文件、库依赖、自定义指令等信息。 5. 集成开发环境(IDE)支持:CMake可以生成适用于多种IDE的项目文件,例如Visual Studio、Eclipse、Xcode等。 6. 命令行工具:CMake提供了命令行工具,允许用户通过命令行对构建过程进行控制。 7. 可配置构建选项:CMake支持构建选项的配置,使得用户可以根据需要启用或禁用特定功能。 8. 包管理器支持:CMake可以从包管理器中获取依赖,并且可以使用FetchContent或ExternalProject模块来获取外部项目。 9. 测试和覆盖工具:CMake支持添加和运行测试,并集成代码覆盖工具,帮助开发者对代码进行质量控制。 10. 文档和帮助系统:CMake提供了一个内置的帮助系统,可以为用户提供命令和变量的详细文档。 CMake的安装和使用通常分为几个步骤: - 下载并解压对应平台的CMake软件包。 - 在系统中配置CMake的环境变量,确保在命令行中可以全局访问cmake命令。 - 根据项目需要编写CMakeLists.txt文件。 - 在含有CMakeLists.txt文件的目录下执行cmake命令生成构建文件。 - 使用生成的构建文件进行项目的构建和编译工作。 CMake的更新和迭代通常会带来更好的用户体验和更高效的构建过程。对于开发者而言,及时更新到最新稳定版本的CMake是保持开发效率和项目兼容性的重要步骤。而对于新用户,掌握CMake的使用则是学习现代软件构建技术的一个重要方面。"