df_All = read.delim("4.All_SMT/HSM.mRNA.cpm.txt", header = T, row.names = 1) #对数据进行转置,如果想对基因分组则不用转置 df_All = t(df_All) View(df_All) # 读取样本分组数据文件 dfGroup_All = read.delim("4.All_SMT/Group.information_PCA_3D.txt", header = T, row.names = 1) dfGroup_All # PCA计算 # 一个逻辑值,指示在进行分析之前是否应该将变量缩放到具有单位方差 pca_result_All <- prcomp(df_All, scale=T) pca_result_All$x<-data.frame(pca_result_All$x) pca_result_All length(pca_result_All)
时间: 2024-03-04 21:52:40 浏览: 106
根据代码,length(pca_result_All)的输出应该是12。因为pca_result_All是使用prcomp函数进行主成分分析得到的结果,是一个包含多个元素的列表对象,其中包括:
1. sdev:包含每个主成分的标准差
2. rotation:包含每个原始变量与主成分之间的相关系数
3. center:包含每个原始变量的均值
4. scale:如果进行了缩放,则包含每个原始变量的标准差
5. x:包含每个样本在每个主成分上的得分
6. 其他元素:不需要在length函数中计算
因此,length(pca_result_All)的输出为12,表示pca_result_All包含12个元素。
相关问题
优化这段代码df_in_grown_ebv = pd.read_table(open(r"C:\Users\荆晓燕\Desktop\20230515分品种计算育种值\生长性能育种值N72分组 (7).txt"), delim_whitespace=True, encoding="gb18030", header=None) df_in_breed_ebv = pd.read_table(open(r"C:\Users\荆晓燕\Desktop\20230515分品种计算育种值\繁殖性能育种值N72分组 (7).txt"), delim_whitespace=True, encoding="gb18030", header=None) # df_in_grown_Phenotype.columns = ['个体号', '活仔EBV', '21d窝重EBV', '断配EBV'] # df_in_breed_Phenotype.columns = ['个体号', '115EBV', '饲料转化率EBV', '瘦肉率EBV', '眼肌EBV', '背膘EBV'] df_in_breed_ebv.columns = ['个体号', '活仔EBV', '21d窝重EBV', '断配EBV'] df_in_grown_ebv.columns = ['个体号', '115daysEBV', '饲料转化率EBV', '瘦肉率EBV', '眼肌EBV', '背膘EBV'] NBA_mean = np.mean(df_in_breed_ebv['活仔EBV']) NBA_std = np.std(df_in_breed_ebv['活仔EBV']) days_mean = np.mean(df_in_grown_ebv['115daysEBV']) days_std = np.std(df_in_grown_ebv['115daysEBV']) fcr_mean = np.mean(df_in_grown_ebv['饲料转化率EBV']) fcr_std = np.std(df_in_grown_ebv['饲料转化率EBV']) output = pd.merge(df_in_grown_ebv, df_in_breed_ebv, how='inner', left_on='个体号', right_on='个体号') # output['计算长白母系指数'] = 0.3 * (NBA - NBA_mean)/NBA_std - 0.3 * (days - days_mean)/days_std - 0.3 * (fcr-fcr_mean)/fcr_std + 0.1 * (pcl-pcl_mean)/pcl_std output['计算长白母系指数'] = 0.29 * (df_in_breed_ebv['活仔EBV'] - NBA_mean)/NBA_std - 0.58 * (df_in_grown_ebv['115daysEBV']- days_mean)/days_std - 0.13 * (df_in_grown_ebv['饲料转化率EBV']-fcr_mean)/fcr_std MLI_mean = np.mean(output['计算长白母系指数']) MLI_std = np.std(output['计算长白母系指数']) output['校正长白母系指数'] = 25 * ((output['计算长白母系指数'] - MLI_mean)/MLI_std) + 100
可以优化的地方有:
1. 重复的路径可以抽象成一个变量,避免代码重复。
2. 可以使用 with 语句来处理文件读取,避免忘记关闭文件。
3. 可以在读取文件时指定列名,避免后续需要重新指定列名。
4. 可以将计算指数和计算校正指数的代码分成两个函数,提高代码的可读性和可维护性。
优化后的代码如下:
```
import pandas as pd
import numpy as np
# 定义文件路径
breed_file = r"C:\Users\荆晓燕\Desktop\20230515分品种计算育种值\繁殖性能育种值N72分组 (7).txt"
grown_file = r"C:\Users\荆晓燕\Desktop\20230515分品种计算育种值\生长性能育种值N72分组 (7).txt"
def read_file(file_path, columns):
with open(file_path, encoding="gb18030") as f:
df = pd.read_table(f, delim_whitespace=True, header=None)
df.columns = columns
return df
# 读取文件并指定列名
df_in_breed_ebv = read_file(breed_file, ['个体号', '活仔EBV', '21d窝重EBV', '断配EBV'])
df_in_grown_ebv = read_file(grown_file, ['个体号', '115daysEBV', '饲料转化率EBV', '瘦肉率EBV', '眼肌EBV', '背膘EBV'])
def calculate_index(df_in_breed_ebv, df_in_grown_ebv):
# 计算指数
NBA_mean = np.mean(df_in_breed_ebv['活仔EBV'])
NBA_std = np.std(df_in_breed_ebv['活仔EBV'])
days_mean = np.mean(df_in_grown_ebv['115daysEBV'])
days_std = np.std(df_in_grown_ebv['115daysEBV'])
fcr_mean = np.mean(df_in_grown_ebv['饲料转化率EBV'])
fcr_std = np.std(df_in_grown_ebv['饲料转化率EBV'])
df = pd.merge(df_in_grown_ebv, df_in_breed_ebv, how='inner', on='个体号')
df['计算长白母系指数'] = 0.29 * (df['活仔EBV'] - NBA_mean) / NBA_std - 0.58 * (df['115daysEBV'] - days_mean) / days_std - 0.13 * (df['饲料转化率EBV'] - fcr_mean) / fcr_std
return df
def calculate_correction_index(df):
# 计算校正指数
MLI_mean = np.mean(df['计算长白母系指数'])
MLI_std = np.std(df['计算长白母系指数'])
df['校正长白母系指数'] = 25 * ((df['计算长白母系指数'] - MLI_mean) / MLI_std) + 100
return df
# 计算指数和校正指数
df_index = calculate_index(df_in_breed_ebv, df_in_grown_ebv)
df_correction_index = calculate_correction_index(df_index)
```
import pandas as pd from openpyxl import Workbook df=pd.read_csv("C:/anaconda/soi.long.data.csv",encoding=('ANSI')) def read_soi_data(file_path): soi_data = pd.read_csv(file_path, index_col=0, parse_dates=True) # 读取CSV文件,指定第一列为日期列,解析为日期格式 soi_data = pd.read_csv(file_path, index_col=0, parse_dates=True) # 将所有时间抽取为单独的列Date(形式为YYYY-MM-01) soi_data['Date'] = soi_data.index.strftime('%Y-%m-01') # 将所有SOI值按照时间顺序抽取为一个单独的SOI soi_data = soi_data[['Date', 'SOI']] # 将所有缺失值丢弃处理 soi_data = soi_data.dropna() # 导出到新的txt文件soi_dropnan.txt soi_data.to_csv('soi_dropnan.txt', sep=',', index=False) return soi_data # 使用示例 soi_data = read_soi_data('soi.long.data.csv') print(soi_data.head()) def read_soi_data(filename): # 读取数据集 df = pd.read_csv(filename, delim_whitespace=True, header=None, names=['SOI']) # 去除缺失值 df.dropna(inplace=True) # 统计最大值、最小值、平均值 soi_max = df['SOI'].max() soi_min = df['SOI'].min() soi_mean = df['SOI'].mean() return soi_max, soi_min, soi_mean # 调用函数读取数据集并统计SOI字段的最大值、最小值、平均值 soi_max, soi_min, soi_mean = read_soi_data('soi_dropnan.txt') # 打印结果 print('SOI字段的最大值为:', soi_max) print('SOI字段的最小值为:', soi_min) print('SOI字段的平均值为:', soi_mean) import pandas as pd import matplotlib.pyplot as plt def plot_histogram_and_pie_chart(): # 读取文件 data = pd.read_csv('soi_dropnan.txt', delim_whitespace=True, header=None, names=['Date', 'SOI']) # 统计最大值和最小值 maxValue = data['SOI'].max() minValue = data['SOI'].min() # 离散化 category = [minValue, 0, maxValue] labels = ['NinoRelate', 'LaNinaRelate'] data['Label'] = pd.cut(data['SOI'], bins=category, labels=labels) # 保存结果 data.to_csv('soi_dropnan_result.csv', index=False, columns=['Date', 'SOI', 'Label']) # 画饼状图 pie_data = data.groupby('Label').size() pie_data.plot(kind='pie', autopct='%1.1f%%', startangle=90) plt.axis('equal') plt.legend() plt.savefig('soi_pie.png', dpi=300) plt.show() # 读取数据 df = pd.read_csv('soi_dropnan_r
I'm sorry, but it seems like the code you provided is incomplete. Can you please provide the rest of the code so that I can better understand what you are trying to achieve?
阅读全文