matlab使用deep network designer搭建网络进行图像增强,将搭建好的网络(没有在deep network designer导入数据进行训练)导出到工作区后,训练网络,编写一段程序,使batch 大小设置为 4,总计迭代 60 个 epoch,每完成 15 轮迭代学习率衰减为原先的 10%
时间: 2023-10-09 21:08:14 浏览: 76
matlab对图像进行增强
好的,这是一个比较复杂的问题,需要分步骤来解决。
首先,导入深度学习工具箱和图像增强网络:
```matlab
% 导入深度学习工具箱和图像增强网络
addpath('C:\Program Files\MATLAB\R2021a\toolbox\nnet\nnet\nnutils\customlayer');
addpath('C:\Program Files\MATLAB\R2021a\toolbox\nnet\nnet\nnutils');
addpath('C:\Program Files\MATLAB\R2021a\toolbox\nnet\nnet\nngui');
addpath('C:\Program Files\MATLAB\R2021a\toolbox\nnet\nnet');
addpath('C:\Program Files\MATLAB\R2021a\toolbox\nnet\deepapp');
addpath('C:\Program Files\MATLAB\R2021a\toolbox\nnet\deep');
addpath('C:\Program Files\MATLAB\R2021a\toolbox\nnet\cnn');
addpath('C:\Program Files\MATLAB\R2021a\toolbox\nnet\vision');
addpath('C:\Program Files\MATLAB\R2021a\toolbox\nnet\examples\nnet');
addpath('C:\Program Files\MATLAB\R2021a\toolbox\nnet\examples\deep_learning');
addpath('C:\Program Files\MATLAB\R2021a\toolbox\nnet\examples\series');
addpath('C:\Program Files\MATLAB\R2021a\toolbox\nnet\examples\stats');
addpath('C:\Program Files\MATLAB\R2021a\toolbox\nnet\examples\rl');
addpath('C:\Program Files\MATLAB\R2021a\toolbox\nnet\examples\time_series');
addpath('C:\Program Files\MATLAB\R2021a\toolbox\nnet\examples\transfer_learning');
addpath('C:\Program Files\MATLAB\R2021a\toolbox\nnet\examples\gans');
addpath('C:\Program Files\MATLAB\R2021a\toolbox\nnet\examples\reinforcement_learning');
addpath('C:\Program Files\MATLAB\R2021a\toolbox\nnet\examples\training');
addpath('C:\Program Files\MATLAB\R2021a\toolbox\nnet\examples\timeseries');
addpath('C:\Program Files\MATLAB\R2021a\toolbox\nnet\examples\deeplearning_shared');
addpath('C:\Program Files\MATLAB\R2021a\toolbox\nnet\examples\deeplearning_shared\utils');
addpath('C:\Program Files\MATLAB\R2021a\toolbox\nnet\examples\deeplearning_shared\data');
addpath('C:\Program Files\MATLAB\R2021a\toolbox\nnet\examples\deeplearning_shared\training');
addpath('C:\Program Files\MATLAB\R2021a\toolbox\nnet\examples\deeplearning_shared\visualization');
addpath('C:\Program Files\MATLAB\R2021a\toolbox\nnet\deepLearning\supportPackages\cuDNN');
addpath('C:\Program Files\MATLAB\R2021a\toolbox\nnet\deepLearning\supportPackages\cuDNN\bin');
% 导入图像增强网络
net = importKerasNetwork('image_enhancer.h5');
```
然后,我们需要编写一个训练函数,该函数将负责训练网络并在每个 epoch 结束时调整学习率:
```matlab
function trainNet(net, data, labels, batchSize, epochs)
% 训练函数
% net:网络模型
% data:训练数据
% labels:训练标签
% batchSize:批大小
% epochs:迭代次数
% 设置学习率
initialLearningRate = 0.01;
decay = 0.1;
numEpochsToDrop = 15;
learnRateSchedule = @(epoch) initialLearningRate * decay^(floor(epoch/numEpochsToDrop));
% 配置训练选项
options = trainingOptions('sgdm', ...
'MiniBatchSize', batchSize, ...
'MaxEpochs', epochs, ...
'InitialLearnRate', initialLearningRate, ...
'LearnRateSchedule', 'piecewise', ...
'LearnRateDropFactor', decay, ...
'LearnRateDropPeriod', numEpochsToDrop, ...
'Shuffle', 'every-epoch', ...
'Verbose', true, ...
'Plots', 'training-progress');
% 训练网络
trainedNet = trainNetwork(data, labels, net.Layers, options);
end
```
最后,我们可以在主程序中调用 trainNet 函数来训练网络:
```matlab
% 导入训练数据和标签
data = ...
labels = ...
% 训练网络
batchSize = 4;
epochs = 60;
trainNet(net, data, labels, batchSize, epochs);
```
这样就完成了训练过程,每 15 轮迭代学习率会衰减为原先的 10%。
阅读全文