with tf.Session() as sess: sess.run(init) saver = tf.train.Saver() train_writer = tf.summary.FileWriter(log_dir+'/train',sess.graph) test_writer = tf.summary.FileWriter(log_dir+'/test') step = 1 coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess, coord) print('doing1') # Keep training until reach max iterations try: while step * batch_size <= training_iters: # print('doing2') batch_xs, batch_ys = sess.run([hrrp_batch, label_batch]) # print(batch_xs.shape) # print(batch_ys.shape) # 获取批数据 sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys, keep_prob: dropout}) if step % display_step == 0: summary= sess.run(merged, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 1.}) test_writer.add_summary(summary, step) # 计算精度 acc = sess.run(accuracy, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 1.}) # 计算损失值 loss = sess.run(cost, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 1.}) 所选择的特征是
时间: 2024-02-14 17:07:06 浏览: 146
在这段代码中,没有涉及到特征的选择。这段代码是用于在 TensorFlow 中训练一个神经网络模型的。在这段代码中,使用了一个数据队列来读取数据,其中 hrrp_batch 和 label_batch 是从数据队列中读取的批量数据。然后,使用 sess.run() 函数来运行优化器,从而通过反向传播算法来更新模型参数。在每个训练步骤中,使用 sess.run() 函数来计算模型的精度和损失值,并使用 tf.summary.FileWriter() 函数来将结果写入 TensorBoard 日志文件中。总的来说,这段代码是用于训练神经网络模型的,而特征的选择通常是在数据预处理和特征工程中进行的。
相关问题
with tf.Session() as sess: saver = tf.train.import_meta_graph('my-model-1000.meta') saver.restore(sess,tf.train.latest_checkpoint('./'))这两句代码的含义?
这两句代码是 TensorFlow 中用于加载保存的模型的语句。第一行代码开启了一个 Tensorflow 会话,第二行代码加载了一个 meta graph 文件(即以 .meta 结尾的文件),表示导入计算图的结构。第三行代码调用了 saver.restore 方法,将已经保存的模型的参数加载到计算图中来。最后一个参数('./')表示保存的模型的路径。
init = tf.global_variables_initializer() saver = tf.train.Saver() sess = tf.Session() sess.run(init)
这段代码实现了TensorFlow的模型初始化和保存。
首先,它使用tf.global_variables_initializer()函数初始化所有的全局变量。这个函数会返回一个操作(operation),用于初始化所有的全局变量。在这里,我们将这个操作称为"init"。
然后,它使用tf.train.Saver()函数创建一个Saver对象。这个对象用于保存和恢复TensorFlow模型的变量。
接着,它使用tf.Session()函数创建一个Session对象。这个对象是TensorFlow的核心执行引擎,用于执行计算图中的操作。
最后,它使用sess.run()函数执行"init"操作,以初始化所有的全局变量。同时,通过Saver对象,它可以将模型的变量保存到磁盘中,以便在之后的训练和预测中使用。
阅读全文