# 准备训练数据 # 自变量:网民 # 因变量:类别(键盘侠和非键盘侠) X = dataset.iloc[:, 0:4].values y = dataset.iloc[:, 4].values(代码改进)
时间: 2024-03-26 15:35:29 浏览: 58
这段代码已经是正确的了,但是为了确保更好的可读性和可维护性,可以添加注释和变量名的说明,例如:
```
# 导入必要的库
import pandas as pd
# 加载数据集
dataset = pd.read_csv('data.csv')
# 提取自变量和因变量
X = dataset.iloc[:, 0:4].values # 自变量为网民的属性(例如年龄、性别、职业等)
y = dataset.iloc[:, 4].values # 因变量为网民的类别(键盘侠或非键盘侠)
```
这样可以使代码更易于理解和修改。同时,还可以根据需要添加数据预处理、特征工程和模型选择等步骤,以构建完整的机器学习流水线。
相关问题
能不能再上面写的代码上加上决定系数,均方误差,总偏差平方和,残差平方和的计算 import pandas as pd import numpy as np from scipy.linalg import inv # 读取数据集 data = pd.read_csv('your_dataset.csv') # 提取自变量和因变量 X = data.iloc[:, :-1].values Y = data.iloc[:, -1].values # 增加常数列 X = np.concatenate([np.ones((X.shape[0], 1)), X], axis=1) # 计算回归系数 beta = np.dot(np.dot(inv(np.dot(X.T, X)), X.T), Y) # 输出结果 print('Coefficients:', beta)
当然可以,下面是加上这些计算的代码示例,包括计算决定系数,均方误差,总偏差平方和和残差平方和:
```python
import pandas as pd
import numpy as np
from scipy.linalg import inv
from sklearn.metrics import r2_score, mean_squared_error
# 读取数据集
data = pd.read_csv('your_dataset.csv')
# 提取自变量和因变量
X = data.iloc[:, :-1].values
Y = data.iloc[:, -1].values
# 增加常数列
X = np.concatenate([np.ones((X.shape[0], 1)), X], axis=1)
# 计算回归系数
beta = np.dot(np.dot(inv(np.dot(X.T, X)), X.T), Y)
# 输出结果
print('Coefficients:', beta)
# 计算决定系数
r2 = r2_score(Y, np.dot(X, beta))
print("R-squared:", r2)
# 计算均方误差
mse = mean_squared_error(Y, np.dot(X, beta))
print("Mean squared error:", mse)
# 计算总偏差平方和
tss = sum((Y - np.mean(Y)) ** 2)
print("Total sum of squares:", tss)
# 计算残差平方和
rss = sum((Y - np.dot(X, beta)) ** 2)
print("Residual sum of squares:", rss)
```
其中,`r2_score` 函数用于计算决定系数,`mean_squared_error` 函数用于计算均方误差。`tss` 和 `rss` 分别表示总偏差平方和和残差平方和,它们的计算方式同上一段回答中所述。
X=dataset.iloc[:,2:-1] y=dataset.iloc[:,1] print(dataset.shape) from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,random_state=0) from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train =sc.fit_transform(X_train) X_test= sc.transform(X_test) from sklearn.ensemble import RandomForestRegressor rf=RandomForestRegressor(n_estimators=200,random_state=0) #rf.fit(X_train, y_train) #拟合训练集 rf.fit(X_train, y_train) #对训练集和测试集进行预测 y_train_pred=rf.predict(X_train) y_test_pred=rf.predict(X_test) print(y_test_pred)
这段代码的作用是使用随机森林算法对一个数据集进行回归分析。首先,将数据集分为自变量(X)和因变量(y),然后使用train_test_split函数将数据集分为训练数据集和测试数据集。接着,使用StandardScaler函数对自变量进行标准化处理,使得数据分布更加符合正态分布。最后,使用RandomForestRegressor函数建立随机森林回归模型,并对训练集和测试集进行预测,并将预测结果输出。
阅读全文