用python实现基于传统机器学习算法估算FR-Pue站点的潜热通量特征选择过程及画散点图
时间: 2024-02-27 07:54:18 浏览: 131
好的,让我们来实现一下基于传统机器学习算法估算FR-Pue站点的潜热通量特征选择过程及画散点图的 Python 代码。本示例代码使用的是随机森林算法进行特征选择和预测。
首先,我们需要导入必要的库,包括 pandas、numpy、matplotlib 和 sklearn。代码如下:
```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
from sklearn.metrics import r2_score, mean_squared_error
```
接下来,我们需要加载数据集。本示例使用的是名为 "FLX_FR-Pue_FLUXNET2015_FULLSET_HH_2000-2014_2-4.csv" 的数据集,其中包含了 FR-Pue 站点的潜热通量和其他气象变量。代码如下:
```
data = pd.read_csv("FLX_FR-Pue_FLUXNET2015_FULLSET_HH_2000-2014_2-4.csv")
```
然后,我们需要对数据进行预处理。本示例中,我们将删除一些无关的变量,并将目标变量 "LE_F_MDS" 提取出来。代码如下:
```
# 删除无关变量
data = data.drop(['TIMESTAMP_START', 'TIMESTAMP_END', 'RECORD', 'USTAR', 'H', 'NETRAD', 'TA_F', 'PA_F', 'VPD_F', 'SWC_F_MDS', 'RNET', 'GPP_NT_VUT_REF', 'NEE_VUT_REF', 'FC_F_MDS', 'SFC_F_MDS', 'TA_F_MDS', 'PA_F_MDS', 'P_F_MDS', 'WS_F_MDS', 'USTAR', 'TSTAR', 'SW_IN_F_MDS', 'SW_OUT_F_MDS', 'LW_IN_F_MDS', 'LW_OUT_F_MDS', 'SWC_F_MDS_1', 'SWC_F_MDS_2', 'USTAR', 'WD', 'WS', 'USTAR', 'ZL', 'SWC_F_MDS_3', 'SWC_F_MDS_4'], axis=1)
# 提取目标变量
target = data['LE_F_MDS']
data = data.drop(['LE_F_MDS'], axis=1)
```
接下来,我们需要进行特征选择。本示例中,我们使用随机森林算法进行特征选择,并选择了四个特征。代码如下:
```
# 特征选择
rf = RandomForestRegressor(random_state=42)
rf.fit(data, target)
importances = rf.feature_importances_
indices = np.argsort(importances)[::-1]
features = data.columns[indices][:4]
print("Selected features:", features)
```
接下来,我们需要将数据划分为训练集和测试集,并使用随机森林算法进行模型训练和预测。代码如下:
```
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(data[features], target, test_size=0.2, random_state=42)
# 随机森林模型训练
rf = RandomForestRegressor(random_state=42)
rf.fit(X_train, y_train)
# 模型预测
y_pred = rf.predict(X_test)
```
最后,我们可以绘制散点图来观察预测值和真实值之间的关系。代码如下:
```
# 绘制散点图
plt.scatter(y_test, y_pred)
plt.xlabel('True Values')
plt.ylabel('Predictions')
plt.title('FR-Pue Site LE_F_MDS Prediction')
plt.show()
```
至此,我们已经完成了基于传统机器学习算法估算FR-Pue站点的潜热通量特征选择过程及画散点图的 Python 代码实现。完整代码如下:
阅读全文