用python实现基于传统机器学习算法估算FR-Pue站点的潜热通量的模型算法及参数优化代码
时间: 2023-09-10 10:11:35 浏览: 116
好的,我可以为你提供一份参考代码。不过,首先需要明确以下几点:
1. 潜热通量是指单位时间内单位面积的蒸发或凝结所释放或吸收的热量。
2. FR-Pue站点是指法国南部一个气象站点。
3. 本文将使用Python中的sklearn库,实现基于传统机器学习算法的模型算法及参数优化。
现在开始,我们将按照以下步骤进行:
1. 数据探索和预处理
2. 特征选择和工程
3. 模型训练和评估
4. 参数调整和优化
首先,让我们加载数据集并进行探索和预处理。
```python
# 导入必要的库
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error, r2_score
# 加载数据集
data = pd.read_csv('data.csv')
# 探索数据集
print(data.head())
print(data.describe())
# 处理缺失值
data = data.dropna()
# 分离特征和标签
X = data.drop('潜热通量', axis=1)
y = data['潜热通量']
# 划分数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
# 特征标准化
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
```
接下来,我们将进行特征选择和工程。
```python
# 特征选择和工程
from sklearn.feature_selection import RFE
from sklearn.linear_model import LinearRegression
# 使用线性回归进行特征选择
lr = LinearRegression()
rfe = RFE(lr, n_features_to_select=5)
rfe.fit(X_train, y_train)
# 输出特征选择结果
print(rfe.support_)
print(rfe.ranking_)
# 选择重要特征
X_train = X_train[:, [0, 1, 2, 4, 7]]
X_test = X_test[:, [0, 1, 2, 4, 7]]
```
现在,我们将进行模型训练和评估。
```python
# 模型训练和评估
from sklearn.linear_model import LinearRegression
from sklearn.neighbors import KNeighborsRegressor
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
# 线性回归
lr = LinearRegression()
lr.fit(X_train, y_train)
y_pred = lr.predict(X_test)
print('线性回归:')
print('MSE:', mean_squared_error(y_test, y_pred))
print('R2 Score:', r2_score(y_test, y_pred))
# KNN
knn = KNeighborsRegressor(n_neighbors=5)
knn.fit(X_train, y_train)
y_pred = knn.predict(X_test)
print('KNN:')
print('MSE:', mean_squared_error(y_test, y_pred))
print('R2 Score:', r2_score(y_test, y_pred))
# 决策树
dt = DecisionTreeRegressor(random_state=0)
dt.fit(X_train, y_train)
y_pred = dt.predict(X_test)
print('决策树:')
print('MSE:', mean_squared_error(y_test, y_pred))
print('R2 Score:', r2_score(y_test, y_pred))
# 随机森林
rf = RandomForestRegressor(n_estimators=100, random_state=0)
rf.fit(X_train, y_train)
y_pred = rf.predict(X_test)
print('随机森林:')
print('MSE:', mean_squared_error(y_test, y_pred))
print('R2 Score:', r2_score(y_test, y_pred))
```
最后,我们将进行参数调整和优化。
```python
# 参数调整和优化
from sklearn.model_selection import GridSearchCV
# KNN
knn = KNeighborsRegressor()
param_grid = {'n_neighbors': [3, 5, 7, 9]}
grid = GridSearchCV(knn, param_grid=param_grid, cv=5)
grid.fit(X_train, y_train)
print('最优参数:', grid.best_params_)
print('最优得分:', grid.best_score_)
# 随机森林
rf = RandomForestRegressor(random_state=0)
param_grid = {'n_estimators': [100, 200, 300], 'max_features': ['auto', 'sqrt', 'log2']}
grid = GridSearchCV(rf, param_grid=param_grid, cv=5)
grid.fit(X_train, y_train)
print('最优参数:', grid.best_params_)
print('最优得分:', grid.best_score_)
```
这就是基于传统机器学习算法估算FR-Pue站点的潜热通量的模型算法及参数优化代码。希望对你有所帮助!
阅读全文