请手动实现给一个RGB图像进行JPEG压缩(手动实现),Python
时间: 2023-11-28 12:50:43 浏览: 131
一种基于MATLAB的JPEG图像压缩具体实现方法.pdf
JPEG压缩是一种有损的压缩方式,它的基本思路是将图像分成若干个8x8的小块,对每个小块进行变换和量化,再进行哈夫曼编码实现压缩。下面是一个简单的手动实现示例:
1.导入相关库
```python
import numpy as np
from scipy import fftpack
from scipy import ndimage
```
2.加载并转换图像
```python
# 加载图像
img = ndimage.imread('image.jpg')
# 将图像转换为YCbCr格式
img = np.float32(img) / 255.0
img_ycc = np.zeros_like(img)
img_ycc[:,:,0] = 0.299*img[:,:,0] + 0.587*img[:,:,1] + 0.114*img[:,:,2]
img_ycc[:,:,1] = -0.1687*img[:,:,0] - 0.3313*img[:,:,1] + 0.5*img[:,:,2]
img_ycc[:,:,2] = 0.5*img[:,:,0] - 0.4187*img[:,:,1] - 0.0813*img[:,:,2]
```
3.分割图像并进行离散余弦变换
```python
# 定义8x8小块的数量
h, w, _ = img_ycc.shape
bh, bw = h // 8, w // 8
# 生成离散余弦变换矩阵
T = np.zeros((8, 8))
for i in range(8):
for j in range(8):
if i == 0:
T[i][j] = 1 / np.sqrt(8)
else:
T[i][j] = 0.5 * np.cos((2*j+1)*i*np.pi/16) * np.sqrt(2/8)
# 将图像分割成8x8小块并进行离散余弦变换
img_dct = np.zeros_like(img_ycc)
for i in range(bh):
for j in range(bw):
block = img_ycc[i*8:(i+1)*8, j*8:(j+1)*8, 0]
img_dct[i*8:(i+1)*8, j*8:(j+1)*8, 0] = fftpack.dct(fftpack.dct(block.T, norm='ortho').T, norm='ortho')
```
4.量化
```python
# 定义量化矩阵
Q = np.array([[16, 11, 10, 16, 24, 40, 51, 61],
[12, 12, 14, 19, 26, 58, 60, 55],
[14, 13, 16, 24, 40, 57, 69, 56],
[14, 17, 22, 29, 51, 87, 80, 62],
[18, 22, 37, 56, 68, 109, 103, 77],
[24, 35, 55, 64, 81, 104, 113, 92],
[49, 64, 78, 87, 103, 121, 120, 101],
[72, 92, 95, 98, 112, 100, 103, 99]])
# 进行量化
img_quant = np.zeros_like(img_dct)
for i in range(bh):
for j in range(bw):
block = img_dct[i*8:(i+1)*8, j*8:(j+1)*8, 0]
img_quant[i*8:(i+1)*8, j*8:(j+1)*8, 0] = np.round(block / (Q * 10))
```
5.反量化和反离散余弦变换
```python
# 反量化
img_dequant = np.zeros_like(img_quant)
for i in range(bh):
for j in range(bw):
block = img_quant[i*8:(i+1)*8, j*8:(j+1)*8, 0]
img_dequant[i*8:(i+1)*8, j*8:(j+1)*8, 0] = block * (Q * 10)
# 反离散余弦变换
img_idct = np.zeros_like(img_ycc)
for i in range(bh):
for j in range(bw):
block = img_dequant[i*8:(i+1)*8, j*8:(j+1)*8, 0]
img_idct[i*8:(i+1)*8, j*8:(j+1)*8, 0] = fftpack.idct(fftpack.idct(block.T, norm='ortho').T, norm='ortho')
```
6.将图像转换回RGB格式并保存
```python
# 将图像转换为RGB格式
img_rgb = np.zeros_like(img)
img_rgb[:,:,0] = img_idct[:,:,0] + 1.402*img_idct[:,:,2]
img_rgb[:,:,1] = img_idct[:,:,0] - 0.34414*img_idct[:,:,1] - 0.71414*img_idct[:,:,2]
img_rgb[:,:,2] = img_idct[:,:,0] + 1.772*img_idct[:,:,1]
# 将像素值限制在0-255之间
img_rgb = np.clip(img_rgb, 0, 1)
img_rgb = np.uint8(img_rgb * 255.0)
# 保存图像
ndimage.imsave('image_compressed.jpg', img_rgb)
```
以上就是一个简单的手动实现JPEG压缩的示例,由于在量化过程中我们将浮点数转换为整数,因此压缩后的图像可能出现一些失真。在实际应用中,我们可以使用更加复杂的压缩方法来减少失真并提高压缩效率。
阅读全文