利用MATLAB求曲面每一点处的曲率半径
时间: 2024-02-07 12:03:33 浏览: 131
matlab计算曲面的曲率代码-Global-Surface-Curvature-Mean:此函数通过在每个顶点上制作点并计算这些点相对于其相
5星 · 资源好评率100%
要求曲面每一点处的曲率半径,需要先求出该点处的法向量和曲率张量。然后利用曲率张量求出主曲率和主曲率方向,进而求出曲率半径。下面给出MATLAB代码实现:
假设曲面函数为$z=f(x,y)$,则曲面上任意一点处的法向量为:
```matlab
syms x y z
f = x^2 + y^2 + z^2;
grad_f = gradient(f, [x, y, z]);
n = simplify(grad_f / norm(grad_f));
```
其中,$grad\_f$为$f$的梯度向量,$n$为法向量。
接下来求出曲率张量$K$:
```matlab
syms u v
r = [x, y, z];
ru = [1, 0, diff(f, x)];
rv = [0, 1, diff(f, y)];
E = simplify(dot(ru, ru));
F = simplify(dot(ru, rv));
G = simplify(dot(rv, rv));
n_u = simplify(cross(rv, n) / norm(cross(rv, n)));
n_v = simplify(cross(n, ru) / norm(cross(n, ru)));
L = simplify(dot(n_u, diff(ru, x)));
M = simplify(dot(n_u, diff(rv, y)));
N = simplify(dot(n_v, diff(rv, y)));
K = simplify((L*N - M^2) / (E*G - F^2));
```
其中,$r=[x,y,z]$为参数方程,$u$和$v$为参数,$ru$和$rv$为$r$对$u$和$v$的偏导数向量,$E,F,G$为第一基本形式系数,$n_u$和$n_v$为法向量对$u$和$v$的偏导数向量,$L,M,N$为第二基本形式系数,$K$为曲率张量。
接下来求出主曲率和主曲率方向:
```matlab
H = simplify((E*N + G*L - 2*F*M) / (2*(E*G - F^2)));
K1 = simplify(H + sqrt(H^2 - K));
K2 = simplify(H - sqrt(H^2 - K));
v1 = simplify(cross(n_u, n_v) / norm(cross(n_u, n_v)));
v2 = simplify(cross(n, v1) / norm(cross(n, v1)));
```
其中,$H$为平均曲率,$K1$和$K2$为主曲率,$v1$和$v2$为主曲率方向。
最后求出曲率半径:
```matlab
R1 = simplify(1 / K1);
R2 = simplify(1 / K2);
```
其中,$R1$和$R2$分别为主曲率所对应的曲率半径。
阅读全文