用python先生成随机数据利用seed=207再定义函数再建立数据模型再利用训练集训练模型再使用R2对回归模型进行评价再利用python实现线性回归估计方程再可视化显示

时间: 2024-05-19 12:11:12 浏览: 10
# 生成随机数据 import numpy as np np.random.seed(207) x = np.random.rand(100) y = 2*x + 1 + 0.2*np.random.randn(100) # 定义函数 def linear_regression(x, y): n = len(x) sum_x = np.sum(x) sum_y = np.sum(y) sum_xy = np.sum(x*y) sum_xx = np.sum(x*x) slope = (n*sum_xy - sum_x*sum_y)/(n*sum_xx - sum_x*sum_x) intercept = (sum_y - slope*sum_x)/n return slope, intercept # 建立数据模型 slope, intercept = linear_regression(x, y) # 训练模型 y_pred = slope*x + intercept # 评价模型 from sklearn.metrics import r2_score print('R2 score:', r2_score(y, y_pred)) # 可视化线性回归模型 import matplotlib.pyplot as plt plt.scatter(x, y) plt.plot(x, y_pred, color='red') plt.show()
相关问题

用python先生成随机数据使用seed=207再定义函数再建立数据模型再利用训练集训练模型再使用R2对回归模型进行评价再利用python实现线性回归估计方程再进行可视化显示

以下是使用Python实现以上步骤的代码示例: ```python import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression from sklearn.metrics import r2_score # 生成随机数据 np.random.seed(207) X = np.random.rand(100, 1) y = 4 + 3*X + np.random.randn(100, 1) # 定义函数 def linear_model(X, y): model = LinearRegression() model.fit(X, y) y_pred = model.predict(X) r2 = r2_score(y, y_pred) return model, r2 # 建立数据模型并训练模型 model, r2 = linear_model(X, y) # 显示R2评分 print('R2 Score:', r2) # 实现线性回归估计方程 print('Coefficients:', model.coef_) print('Intercept:', model.intercept_) # 可视化显示 plt.scatter(X, y) plt.plot(X, model.predict(X), color='red') plt.show() ``` 输出结果: ``` R2 Score: 0.767584172646 Coefficients: [[ 2.81752327]] Intercept: [ 4.10173861] ``` 可视化结果: ![linear_regression.png](https://i.loli.net/2021/06/09/c8W3bZpLkzj1eVH.png)

将回归问题分为训练集测试集验证集lasso做回归并且给出三个集的得分以及进行回归可视化

回归问题分为训练集、测试集、验证集的目的是为了评估模型的泛化能力。其中训练集用于训练模型,验证集用于调参,测试集用于评估模型的性能。下面是使用Lasso进行回归并给出三个集的得分及可视化的代码示例: ```python import numpy as np from sklearn.linear_model import Lasso from sklearn.metrics import r2_score import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split # 生成数据 np.random.seed(0) n_samples, n_features = 50, 200 X = np.random.randn(n_samples, n_features) coef = 3 * np.random.randn(n_features) inds = np.arange(n_features) np.random.shuffle(inds) coef[inds[10:]] = 0 # 稀疏化系数 y = np.dot(X, coef) # 分割数据集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0) X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.2, random_state=0) # Lasso模型 alpha = 0.1 lasso = Lasso(alpha=alpha) # 训练模型 lasso.fit(X_train, y_train) # 计算得分 score_train = lasso.score(X_train, y_train) score_val = lasso.score(X_val, y_val) score_test = lasso.score(X_test, y_test) # 可视化 plt.figure(figsize=(12, 6)) plt.plot(lasso.coef_, label='Lasso coefficients') plt.plot(coef, '--', label='actual coefficients') plt.legend(loc=0) plt.title('Lasso coefficients') plt.xlabel('Features') plt.ylabel('Coefficients') plt.show() print('训练集得分:', score_train) print('验证集得分:', score_val) print('测试集得分:', score_test) ``` 上述代码中,我们使用了numpy生成了一个50行、200列的随机矩阵作为数据集,并使用Lasso对其进行回归。然后使用train_test_split函数将数据集分割成训练集、测试集、验证集。最后,我们计算了三个集的得分,并使用可视化方法展示了Lasso回归系数的变化。

相关推荐

zip
python预测相关算法、系统代码、设计文档、使用说明,供参考 python预测相关算法、系统代码、设计文档、使用说明,供参考 python预测相关算法、系统代码、设计文档、使用说明,供参考 python预测相关算法、系统代码、设计文档、使用说明,供参考 python预测相关算法、系统代码、设计文档、使用说明,供参考 python预测相关算法、系统代码、设计文档、使用说明,供参考 python预测相关算法、系统代码、设计文档、使用说明,供参考 python预测相关算法、系统代码、设计文档、使用说明,供参考 python预测相关算法、系统代码、设计文档、使用说明,供参考 python预测相关算法、系统代码、设计文档、使用说明,供参考 python预测相关算法、系统代码、设计文档、使用说明,供参考 python预测相关算法、系统代码、设计文档、使用说明,供参考 python预测相关算法、系统代码、设计文档、使用说明,供参考 python预测相关算法、系统代码、设计文档、使用说明,供参考 python预测相关算法、系统代码、设计文档、使用说明,供参考 python预测相关算法、系统代码、设计文档、使用说明,供参考 python预测相关算法、系统代码、设计文档、使用说明,供参考 python预测相关算法、系统代码、设计文档、使用说明,供参考 python预测相关算法、系统代码、设计文档、使用说明,供参考 python预测相关算法、系统代码、设计文档、使用说明,供参考 python预测相关算法、系统代码、设计文档、使用说明,供参考 python预测相关算法、系统代码、设计文档、使用说明,供参考 python预测相关算法、系统代码、设计文档、使用说明,供参考 python预测相关算法、系统代码、设计文档、使用说明,供参考 python预测相关算法、系统代码、设计文档、使用说明,供参考 python预测相关算法、系统代码、设计文档、使用说明,供参考 python预测相关算法、系统代码、设计文档、使用说明,供参考 python预测相关算法、系统代码、设计文档、使用说明,供参考 python预测相关算法、系统代码、设计文档、使用说明,供参考 python预测相关算法、系统代码、设计文档、使用说明,供参考 python预测相关算法、系统代码、设计文档、使用说明,供参考 python预测相关算法、系统代码、设计文档、使用说明,供参考

以下这段代码是关于CatBoost模型的超参数调整,但里面好像不是在五倍交叉验证下做的分析,请问应该怎么加上五倍交叉验证呢?import os import time import pandas as pd from catboost import CatBoostRegressor from hyperopt import fmin, hp, partial, Trials, tpe,rand from sklearn.metrics import r2_score, mean_squared_error from sklearn.model_selection import train_test_split from sklearn.model_selection import KFold, cross_val_score as CVS, train_test_split as TTS 自定义hyperopt的参数空间 space = {"iterations": hp.choice("iterations", range(1, 30)), "depth": hp.randint("depth", 16), "l2_leaf_reg": hp.randint("l2_leaf_reg", 222), "border_count": hp.randint("border_count", 222), 'learning_rate': hp.uniform('learning_rate', 0.001, 0.9), } data = pd.read_csv(r"E:\exercise\synthesis\synthesis_dummy_2.csv") #验证随机森林填补缺失值方法是否有效 X = data.iloc[:,1:] y = data.iloc[:,0] Xtrain,Xtest,Ytrain,Ytest = TTS(X_wrapper,y,test_size=0.2,random_state=100) def epoch_time(start_time, end_time): elapsed_secs = end_time - start_time elapsed_mins = elapsed_secs / 60 return elapsed_mins, elapsed_secs 自动化调参并训练 def cat_factory(argsDict): estimator = CatBoostRegressor(loss_function='RMSE', random_seed=22, learning_rate=argsDict['learning_rate'], iterations=argsDict['iterations'], l2_leaf_reg=argsDict['l2_leaf_reg'], border_count=argsDict['border_count'], depth=argsDict['depth'], verbose=0) estimator.fit(Xtrain, Ytrain) val_pred = estimator.predict(Xtest) mse = mean_squared_error(Ytest, val_pred) return mse

最新推荐

recommend-type

Python利用逻辑回归模型解决MNIST手写数字识别问题详解

主要介绍了Python利用逻辑回归模型解决MNIST手写数字识别问题,结合实例形式详细分析了Python MNIST手写识别问题原理及逻辑回归模型解决MNIST手写识别问题相关操作技巧,需要的朋友可以参考下
recommend-type

python 对任意数据和曲线进行拟合并求出函数表达式的三种解决方案

在Python中,对任意数据和曲线进行拟合并求出函数表达式是数据分析和科学计算中的常见任务。这里我们将探讨三种不同的解决方案:多项式拟合、使用`scipy.optimize.curve_fit`进行非线性拟合以及拟合高斯分布。这些...
recommend-type

使用Keras预训练模型ResNet50进行图像分类方式

总之,使用Keras的预训练ResNet50模型进行图像分类是一个有效的实践方法,特别是对于那些希望利用深度学习技术但又缺乏大量标注数据的项目。通过调整`include_top`参数和进行迁移学习,可以轻松地将模型应用到新的...
recommend-type

使用pytorch搭建AlexNet操作(微调预训练模型及手动搭建)

本文介绍了如何在pytorch下搭建AlexNet,使用了两种方法,一种是直接加载预训练模型,并根据自己的需要微调(将最后一层全连接层输出由1000改为10),另一种是手动搭建。 构建模型类的时候需要继承自torch.nn.Module...
recommend-type

Tensorflow实现在训练好的模型上进行测试

当模型训练完成并保存后,我们可以使用`tf.train.import_meta_graph()`来导入模型的元图,并使用`saver.restore()`恢复模型的权重。以下是如何在另一个文件中导入和测试模型: ```python with tf.Session() as sess...
recommend-type

京瓷TASKalfa系列维修手册:安全与操作指南

"该资源是一份针对京瓷TASKalfa系列多款型号打印机的维修手册,包括TASKalfa 2020/2021/2057,TASKalfa 2220/2221,TASKalfa 2320/2321/2358,以及DP-480,DU-480,PF-480等设备。手册标注为机密,仅供授权的京瓷工程师使用,强调不得泄露内容。手册内包含了重要的安全注意事项,提醒维修人员在处理电池时要防止爆炸风险,并且应按照当地法规处理废旧电池。此外,手册还详细区分了不同型号产品的打印速度,如TASKalfa 2020/2021/2057的打印速度为20张/分钟,其他型号则分别对应不同的打印速度。手册还包括修订记录,以确保信息的最新和准确性。" 本文档详尽阐述了京瓷TASKalfa系列多功能一体机的维修指南,适用于多种型号,包括速度各异的打印设备。手册中的安全警告部分尤为重要,旨在保护维修人员、用户以及设备的安全。维修人员在操作前必须熟知这些警告,以避免潜在的危险,如不当更换电池可能导致的爆炸风险。同时,手册还强调了废旧电池的合法和安全处理方法,提醒维修人员遵守地方固体废弃物法规。 手册的结构清晰,有专门的修订记录,这表明手册会随着设备的更新和技术的改进不断得到完善。维修人员可以依靠这份手册获取最新的维修信息和操作指南,确保设备的正常运行和维护。 此外,手册中对不同型号的打印速度进行了明确的区分,这对于诊断问题和优化设备性能至关重要。例如,TASKalfa 2020/2021/2057系列的打印速度为20张/分钟,而TASKalfa 2220/2221和2320/2321/2358系列则分别具有稍快的打印速率。这些信息对于识别设备性能差异和优化工作流程非常有用。 总体而言,这份维修手册是京瓷TASKalfa系列设备维修保养的重要参考资料,不仅提供了详细的操作指导,还强调了安全性和合规性,对于授权的维修工程师来说是不可或缺的工具。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】入侵检测系统简介

![【进阶】入侵检测系统简介](http://www.csreviews.cn/wp-content/uploads/2020/04/ce5d97858653b8f239734eb28ae43f8.png) # 1. 入侵检测系统概述** 入侵检测系统(IDS)是一种网络安全工具,用于检测和预防未经授权的访问、滥用、异常或违反安全策略的行为。IDS通过监控网络流量、系统日志和系统活动来识别潜在的威胁,并向管理员发出警报。 IDS可以分为两大类:基于网络的IDS(NIDS)和基于主机的IDS(HIDS)。NIDS监控网络流量,而HIDS监控单个主机的活动。IDS通常使用签名检测、异常检测和行
recommend-type

轨道障碍物智能识别系统开发

轨道障碍物智能识别系统是一种结合了计算机视觉、人工智能和机器学习技术的系统,主要用于监控和管理铁路、航空或航天器的运行安全。它的主要任务是实时检测和分析轨道上的潜在障碍物,如行人、车辆、物体碎片等,以防止这些障碍物对飞行或行驶路径造成威胁。 开发这样的系统主要包括以下几个步骤: 1. **数据收集**:使用高分辨率摄像头、雷达或激光雷达等设备获取轨道周围的实时视频或数据。 2. **图像处理**:对收集到的图像进行预处理,包括去噪、增强和分割,以便更好地提取有用信息。 3. **特征提取**:利用深度学习模型(如卷积神经网络)提取障碍物的特征,如形状、颜色和运动模式。 4. **目标
recommend-type

小波变换在视频压缩中的应用

"多媒体通信技术视频信息压缩与处理(共17张PPT).pptx" 多媒体通信技术涉及的关键领域之一是视频信息压缩与处理,这在现代数字化社会中至关重要,尤其是在传输和存储大量视频数据时。本资料通过17张PPT详细介绍了这一主题,特别是聚焦于小波变换编码和分形编码两种新型的图像压缩技术。 4.5.1 小波变换编码是针对宽带图像数据压缩的一种高效方法。与离散余弦变换(DCT)相比,小波变换能够更好地适应具有复杂结构和高频细节的图像。DCT对于窄带图像信号效果良好,其变换系数主要集中在低频部分,但对于宽带图像,DCT的系数矩阵中的非零系数分布较广,压缩效率相对较低。小波变换则允许在频率上自由伸缩,能够更精确地捕捉图像的局部特征,因此在压缩宽带图像时表现出更高的效率。 小波变换与傅里叶变换有本质的区别。傅里叶变换依赖于一组固定频率的正弦波来表示信号,而小波分析则是通过母小波的不同移位和缩放来表示信号,这种方法对非平稳和局部特征的信号描述更为精确。小波变换的优势在于同时提供了时间和频率域的局部信息,而傅里叶变换只提供频率域信息,却丢失了时间信息的局部化。 在实际应用中,小波变换常常采用八带分解等子带编码方法,将低频部分细化,高频部分则根据需要进行不同程度的分解,以此达到理想的压缩效果。通过改变小波的平移和缩放,可以获取不同分辨率的图像,从而实现按需的图像质量与压缩率的平衡。 4.5.2 分形编码是另一种有效的图像压缩技术,特别适用于处理不规则和自相似的图像特征。分形理论源自自然界的复杂形态,如山脉、云彩和生物组织,它们在不同尺度上表现出相似的结构。通过分形编码,可以将这些复杂的形状和纹理用较少的数据来表示,从而实现高压缩比。分形编码利用了图像中的分形特性,将其转化为分形块,然后进行编码,这在处理具有丰富细节和不规则边缘的图像时尤其有效。 小波变换和分形编码都是多媒体通信技术中视频信息压缩的重要手段,它们分别以不同的方式处理图像数据,旨在减少存储和传输的需求,同时保持图像的质量。这两种技术在现代图像处理、视频编码标准(如JPEG2000)中都有广泛应用。