se3_transformer中参数详解
时间: 2024-05-11 19:13:03 浏览: 287
se3_transformer
SE3-Transformer是一种基于Transformer模型的3D形状处理网络,它可以将点云和网格表示的3D形状进行分类、分割、重建等任务。SE3-Transformer网络中的每个模块都有许多参数,下面是对一些重要参数的介绍:
1. n_layers: SE3-Transformer网络的层数。
2. n_heads: Transformer中的multi-head注意力机制中的head数目。
3. d_model: 模型的维度大小。
4. d_input: 输入特征的维度大小。
5. d_output: 输出特征的维度大小。
6. dim_k, dim_v: 计算注意力矩阵中的K, V矩阵的维度大小。
7. dim_u: 计算注意力矩阵中的U向量的维度大小。
8. edge_dim: 边特征的维度大小。
9. n_neighbors: 每个点在邻域中的点数。
10. aggr: 邻域信息聚合方式,如mean、max、sum等。
11. norm_layer: 归一化层类型,如BatchNorm、LayerNorm等。
以上是一些常用的SE3-Transformer网络参数,这些参数对网络的性能有着重要影响,需要根据具体任务和数据集来进行调整。如果您需要更深入了解SE3-Transformer网络,请参考相关论文和代码实现。
阅读全文