图像配准 python
时间: 2023-10-15 20:03:38 浏览: 131
图像的配准
图像配准(Image Registration)是指将两个或多个图像(或图像序列)的坐标系进行转换,使它们在相同比例尺度下对齐,以便进行比较、分析和集成。在Python中,可以使用OpenCV和scikit-image库实现图像配准。
1. OpenCV实现图像配准
OpenCV是一个用于计算机视觉的开源库,它提供了多种图像处理和计算机视觉算法。在OpenCV中,可以通过以下步骤实现图像配准:
(1)读取需要配准的图像
import cv2
img1 = cv2.imread('image1.jpg')
img2 = cv2.imread('image2.jpg')
(2)提取图像特征点
sift = cv2.xfeatures2d.SIFT_create()
kp1, des1 = sift.detectAndCompute(img1, None)
kp2, des2 = sift.detectAndCompute(img2, None)
(3)匹配特征点
matcher = cv2.FlannBasedMatcher()
matches = matcher.knnMatch(des1, des2, k=2)
(4)筛选匹配点
good_matches = []
for m, n in matches:
if m.distance < 0.7 * n.distance:
good_matches.append(m)
(5)计算变换矩阵
src_pts = np.float32([kp1[m.queryIdx].pt for m in good_matches]).reshape(-1, 1, 2)
dst_pts = np.float32([kp2[m.trainIdx].pt for m in good_matches]).reshape(-1, 1, 2)
M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
(6)对图像进行变换
result = cv2.warpPerspective(img1, M, (img2.shape[1], img2.shape[0]))
result = cv2.addWeighted(result, 0.5, img2, 0.5, 0)
2. scikit-image实现图像配准
scikit-image是一个用于图像处理的Python库,它提供了多种图像处理和计算机视觉算法。在scikit-image中,可以通过以下步骤实现图像配准:
(1)读取需要配准的图像
from skimage import io
img1 = io.imread('image1.jpg')
img2 = io.imread('image2.jpg')
(2)提取图像特征点
from skimage.feature import ORB
orb = ORB(n_keypoints=1000)
kp1 = orb.detect(img1)
kp2 = orb.detect(img2)
(3)计算特征点描述符
from skimage.feature import match_descriptors
des1 = orb.extract(img1, kp1)
des2 = orb.extract(img2, kp2)
(4)匹配特征点
from skimage.feature import match_descriptors
matches = match_descriptors(des1, des2)
(5)计算变换矩阵
from skimage.transform import FundamentalMatrixTransform
model, inliers = ransac((src, dst), FundamentalMatrixTransform, min_samples=8,
residual_threshold=1, max_trials=100)
M = model.params
(6)对图像进行变换
from skimage.transform import warp
result = warp(img1, M, output_shape=(img2.shape[0], img2.shape[1]))
result = np.maximum(result, img2)
阅读全文