log_prob = dist.log_prob(action) log_prob -= tf.reduce_sum(2 * (np.log(2) - action - tf.nn.softplus(-2 * action)), axis=1, keepdims=True) action = tf.tanh(action)
时间: 2023-12-23 22:04:08 浏览: 151
这段代码看起来是在计算一个动作的概率分布的负对数似然。具体来说,它首先计算了该动作在给定分布下的对数概率,然后通过减去一个与该动作相关的修正项来得到最终的负对数似然值。修正项中的softmax函数和tanh函数都是用于将动作的取值范围限制在[-1, 1]之间,确保动作是有效的。这段代码可能用于强化学习中的某个算法中,例如策略梯度算法。
相关问题
def call(self, state): #熵log_prob x = self.fc1(state) x = self.fc2(x) mu = self.mu(x) log_std = self.log_std(x) log_std = tf.clip_by_value(log_std, -20, 2) std = tf.math.exp(log_std) dist = tfp.distributions.Normal(mu, std) action = dist.sample() log_prob = dist.log_prob(action) log_prob -= tf.reduce_sum(2 * (np.log(2) - action - tf.nn.softplus(-2 * action)), axis=1, keepdims=True) return action, log_prob
这段代码是一个Actor网络的前向传播函数,它接收一个状态state作为输入,返回一个动作action和相应的对数概率log_prob。
具体来说,这个函数首先通过两个全连接层(fc1和fc2)将状态state转换为一个mu和log_std向量,它们分别表示动作分布的均值和标准差。然后,使用这些向量创建一个正态分布dist,并从中采样一个动作action。接下来,函数计算log_prob,这是动作的对数概率,可以用于计算策略梯度。最后,它使用一个公式计算熵的贡献,并将其从log_prob中减去。
需要注意的是,这段代码使用了TensorFlow Probability(tfp)库中的分布函数和一些数学函数。其中,clip_by_value()函数用于将log_std截断在[-20, 2]的范围内,以避免标准差太小或太大。exp()函数用于计算标准差的指数,而log_prob的计算使用了一些数学公式,包括softmax()和reduce_sum()等函数。
总的来说,这段代码实现了一个连续动作空间的Actor网络,它将状态映射到一个动作和相应的对数概率,可以用于训练强化学习模型。
class Actor(tf.keras.Model): def __init__(self, state_dim, action_dim, max_action): super(Actor, self).__init__() self.layer1 = tf.keras.layers.Dense(256, activation='relu') self.layer2 = tf.keras.layers.Dense(256, activation='relu') self.mean = tf.keras.layers.Dense(action_dim, activation='tanh') self.log_std = tf.keras.layers.Dense(action_dim, activation='tanh') self.max_action = max_action def call(self, state): x = self.layer1(state) x = self.layer2(x) mean = self.mean(x) * self.max_action log_std = self.log_std(x) log_std = tf.clip_by_value(log_std, -20, 2) std = tf.exp(log_std) dist = tfd.Normal(mean, std) action = dist.sample() log_prob = dist.log_prob(action) log_prob -= tf.reduce_sum(2 * (np.log(2) - action - tf.nn.softplus(-2 * action)), axis=1, keepdims=True) action = tf.tanh(action) return action, log_prob对该段代码进行解释
这段代码定义了一个Actor类,它是一个神经网络模型,用于预测在给定的状态下应该采取什么样的动作。具体地,这个Actor类包含以下几个成员变量和函数:
- 成员变量state_dim:表示状态(state)的维度;
- 成员变量action_dim:表示动作(action)的维度;
- 成员变量max_action:表示动作的最大值;
- 函数__init__:初始化Actor类,它定义了神经网络的结构,包括三个全连接层(layer1、layer2、mean)和一个用于输出动作的全连接层(log_std)。这些层分别包含256个神经元,其中前两个层采用ReLU激活函数,最后一个输出动作的层采用双曲正切函数(tanh)作为激活函数;
- 函数call:接收一个状态作为输入,返回一个动作和与该动作相关的概率值。该函数首先将输入状态通过前两个全连接层进行处理,然后使用mean层输出动作的均值,再使用log_std层输出动作的标准差的对数。这里采用双曲正切函数作为激活函数是因为它的输出范围是[-1,1],这样乘以self.max_action就可以得到[-self.max_action, self.max_action]之间的动作值。然后通过标准差和均值构建一个正态分布,并从中采样得到一个动作值。根据采样得到的动作值,计算该动作的概率,并使用一个公式对概率进行调整,最后将动作值通过tanh函数映射到[-1,1]之间。函数最终返回该动作值和对应的概率值的自然对数。
阅读全文