resnet 50超参数
时间: 2023-08-29 18:10:02 浏览: 179
ResNet-50 是一个具有 50 层深度的卷积神经网络模型,其超参数如下:
1. Batch size:一般为 32 或 64。
2. Learning rate:通常设置为 0.1 或 0.01,并可以使用学习率调度器进行调整。
3. Momentum:通常设置为 0.9。
4. Weight decay:一般设置为 0.0001。
5. Optimizer:使用随机梯度下降(SGD)优化器。
6. 激活函数:使用 ReLU 激活函数。
7. Dropout:通常设置为 0.5。
8. 输入图像大小:通常为 224x224。
需要注意的是,这些超参数并不是绝对的,可以根据具体的数据集和任务进行微调。
相关问题
pytorch实现resnet 50
### 回答1:
b'pytorch实现resnet50' 可以使用PyTorch库来实现ResNet50。ResNet是深度学习中一种非常流行的卷积神经网络结构,它包含多个Residual Block。在PyTorch中,可以使用torchvision库中的预训练模型或者自行构建网络来实现ResNet50。
### 回答2:
ResNet 50是一种深度卷积神经网络,用于图像分类和目标检测任务。在PyTorch中实现ResNet 50,您可以遵循以下步骤:
1. 导入必要的库:
```python
import torch
import torch.nn as nn
import torch.optim as optim
```
2. 定义ResNet 50的结构:ResNet 50由多个残差模块组成,每个残差模块包含多个卷积层和标准化层。最后,使用全局平均池化和完全连接层进行分类。定义ResNet 50的结构:
```python
class ResNet50(nn.Module):
def __init__(self, num_classes=1000):
super(ResNet50, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(64, 3)
self.layer2 = self._make_layer(128, 4, stride=2)
self.layer3 = self._make_layer(256, 6, stride=2)
self.layer4 = self._make_layer(512, 3, stride=2)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512 * block.expansion, num_classes)
def _make_layer(self, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.reshape(x.size(0), -1)
x = self.fc(x)
return x
```
3. 定义ResNet 50的残差模块:使用残差块改善训练深层的模型。定义ResNet 50的残差模块:
```python
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
```
4. 定义损失函数和优化器:使用交叉熵损失函数和随机梯度下降优化器来训练模型。
```python
model = ResNet50().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
```
5. 训练模型:迭代训练模型,调整损失函数并使用优化器进行优化。
```python
num_epochs = 10
for epoch in range(num_epochs):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data[0].to(device), data[1].to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 100 == 99:
print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 100))
running_loss = 0.0
```
以上是在PyTorch中实现ResNet 50的基本步骤。要实现所有的步骤,您必须定义ResNet 50的结构,残差块和优化器,并使用迭代训练模型来完成整个过程。
### 回答3:
ResNet-50是ResNet系列的一种,是在ILSVRC 2015比赛中取得了很大的成功的网络结构。它相比于之前的网络结构,主要有两个创新点:全卷积层和残差网络。全卷积层用于增加感受野,使得每个卷积层处理的信息范围更广,从而提取更加抽象和高级的特征。而残差网络则是用于解决深层神经网络的梯度消失问题,并提升模型的准确率。在ResNet-50中,采用了50层的深度,并且在每个Block中包含了经典的残差结构。
下面介绍如何用PyTorch实现ResNet-50
1.导入必要的库和模块
```
import torch
import torch.nn as nn
import torch.optim as optim
import torch.utils.data as data
import torchvision
import torchvision.transforms as transforms
```
2.定义ResNet-50模型
```
class Bottleneck(nn.Module):
def __init__(self, in_channels, out_channels, stride=1):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(out_channels)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(out_channels)
self.conv3 = nn.Conv2d(out_channels, out_channels * 4, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(out_channels * 4)
self.relu = nn.ReLU(inplace=True)
self.stride = stride
if in_channels != out_channels * 4 or stride != 1:
self.shortcut = nn.Sequential(
nn.Conv2d(in_channels, out_channels * 4, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(out_channels * 4)
)
else:
self.shortcut = nn.Sequential()
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
out += self.shortcut(residual)
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, layers, num_classes=1000):
super(ResNet, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512 * block.expansion, num_classes)
def _make_layer(self, block, out_channels, blocks, stride=1):
layers = []
layers.append(block(64, out_channels, stride))
for i in range(1, blocks):
layers.append(block(out_channels * 4, out_channels))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
```
3.定义训练过程
```
def train(model, criterion, optimizer, train_loader, epochs):
for epoch in range(epochs):
running_loss = 0.0
for i, (inputs, targets) in enumerate(train_loader):
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
running_loss += loss.item()
if (i + 1) % 100 == 0:
print('[Epoch %d Batch %5d] Loss: %.3f' % (epoch + 1, i + 1, running_loss / 100))
running_loss = 0.0
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
epochs = 5
batch_size = 64
lr = 0.001
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
train_set = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
train_loader = data.DataLoader(train_set, batch_size=batch_size, shuffle=True, num_workers=4)
model = ResNet(Bottleneck, [3, 4, 6, 3], num_classes=10)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=lr)
model.to(device)
train(model, criterion, optimizer, train_loader, epochs)
```
4.进行模型评估
```
def test(model, test_loader):
correct = 0
total = 0
with torch.no_grad():
for data in test_loader:
images, labels = data
images, labels = images.to(device), labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %d %%' % (100 * correct / total))
test_set = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
test_loader = data.DataLoader(test_set, batch_size=batch_size, shuffle=False, num_workers=4)
test(model, test_loader)
```
以上是使用PyTorch实现ResNet-50的过程,通过对训练集的训练和测试集的评估,可以大致了解模型的准确率和性能,进一步提高模型的泛化能力和优化模型的参数。
pytorch实现resnet 18
PyTorch可以通过使用预训练模型和自定义层来实现ResNet-18。
首先,可以使用PyTorch的torchvision模块中的预训练模型来加载ResNet-18。这可以通过以下代码实现:
```
import torch
import torchvision.models as models
resnet18 = models.resnet18(pretrained=True)
```
接下来,可以根据需要添加自定义层。例如,可以添加一个全连接层来适应特定的分类任务:
```
import torch.nn as nn
num_classes = 10
resnet18.fc = nn.Linear(resnet18.fc.in_features, num_classes)
```
最后,可以使用PyTorch的数据加载器和优化器来训练模型:
```
import torch.optim as optim
import torchvision.datasets as datasets
import torchvision.transforms as transforms
train_dataset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transforms.ToTensor())
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True)
optimizer = optim.SGD(resnet18.parameters(), lr=.001, momentum=.9)
criterion = nn.CrossEntropyLoss()
for epoch in range(10):
for i, (inputs, labels) in enumerate(train_loader):
optimizer.zero_grad()
outputs = resnet18(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
```
这样就可以使用PyTorch实现ResNet-18了。
阅读全文