c++实现Louvain算法
时间: 2023-11-26 15:49:02 浏览: 253
matlab如何敲代码-generalizedLouvain:实现通用的Louvain算法(C++后端和Matlab接口)
以下是C++实现Louvain算法的步骤:
1.定义节点和边的数据结构
```c++
struct Node {
int id; // 节点id
int community; // 所属社区
int degree; // 节点度数
vector<int> neighbors; // 相邻节点
};
struct Edge {
int src; // 边的起点
int dst; // 边的终点
int weight; // 边的权重
};
```
2.读取图数据并初始化节点和边
```c++
vector<Node> nodes;
vector<Edge> edges;
// 读取图数据并初始化节点和边
// ...
// 初始化节点的社区为自身
for (int i = 0; i < nodes.size(); i++) {
nodes[i].community = i;
}
// 初始化每个节点的度数
for (int i = 0; i < edges.size(); i++) {
nodes[edges[i].src].degree += edges[i].weight;
nodes[edges[i].dst].degree += edges[i].weight;
}
```
3.定义计算模块度Q函数的函数
```c++
double calcModularity(vector<Node>& nodes, vector<Edge>& edges) {
double q = 0.0;
double m = 0.0;
// 计算总权重
for (int i = 0; i < edges.size(); i++) {
m += edges[i].weight;
}
// 计算每个社区的模块度
for (int i = 0; i < nodes.size(); i++) {
for (int j = 0; j < nodes.size(); j++) {
if (nodes[i].community == nodes[j].community) {
double ki = nodes[i].degree;
double kj = nodes[j].degree;
double aij = 0.0;
// 计算节点i和节点j之间的边权重
for (int k = 0; k < edges.size(); k++) {
if ((edges[k].src == i && edges[k].dst == j) || (edges[k].src == j && edges[k].dst == i)) {
aij = edges[k].weight;
break;
}
}
q += (aij - ki * kj / (2 * m)) / (2 * m);
}
}
}
return q;
}
```
4.定义计算节点移动后的模块度增量的函数
```c++
double calcDeltaQ(Node& node, int community, vector<Node>& nodes, vector<Edge>& edges) {
double deltaQ = 0.0;
double m = 0.0;
// 计算总权重
for (int i = 0; i < edges.size(); i++) {
m += edges[i].weight;
}
// 计算节点移动后的模块度增量
for (int i = 0; i < node.neighbors.size(); i++) {
int neighbor = node.neighbors[i];
int oldCommunity = nodes[neighbor].community;
double ki = node.degree;
double kj = nodes[neighbor].degree;
double aij = 0.0;
// 计算节点i和节点j之间的边权重
for (int j = 0; j < edges.size(); j++) {
if ((edges[j].src == node.id && edges[j].dst == neighbor) || (edges[j].src == neighbor && edges[j].dst == node.id)) {
aij = edges[j].weight;
break;
}
}
double deltaQij = 0.0;
if (community == oldCommunity) {
deltaQij = (aij - ki * kj / (2 * m)) / m;
} else {
deltaQij = (-aij + ki * kj / (2 * m)) / m;
}
deltaQ += deltaQij;
}
return deltaQ;
}
```
5.定义节点移动函数
```c++
void moveNode(Node& node, int community, vector<Node>& nodes, vector<Edge>& edges) {
int oldCommunity = node.community;
// 更新节点的社区
node.community = community;
// 更新节点的相邻节点的度数
for (int i = 0; i < node.neighbors.size(); i++) {
int neighbor = node.neighbors[i];
nodes[neighbor].degree -= edges[i].weight;
if (nodes[neighbor].community == oldCommunity) {
nodes[neighbor].degree += edges[i].weight;
} else if (nodes[neighbor].community == community) {
nodes[neighbor].degree += edges[i].weight;
}
}
}
```
6.定义Louvain算法函数
```c++
void louvain(vector<Node>& nodes, vector<Edge>& edges) {
bool isMoved = true;
while (isMoved) {
isMoved = false;
for (int i = 0; i < nodes.size(); i++) {
Node& node = nodes[i];
int oldCommunity = node.community;
int bestCommunity = oldCommunity;
double maxDeltaQ = 0.0;
// 遍历节点的相邻节点,计算节点移动后的模块度增量
for (int j = 0; j < node.neighbors.size(); j++) {
int neighbor = node.neighbors[j];
double deltaQ = calcDeltaQ(node, nodes[neighbor].community, nodes, edges);
if (deltaQ > maxDeltaQ) {
maxDeltaQ = deltaQ;
bestCommunity = nodes[neighbor].community;
}
}
// 如果节点移动后的模块度增量大于0,则移动节点
if (maxDeltaQ > 0.0) {
moveNode(node, bestCommunity, nodes, edges);
isMoved = true;
}
}
}
}
```
阅读全文