c4.5算法比较复杂的实例

时间: 2023-11-18 19:42:54 浏览: 51
C4.5算法是一种决策树算法,它的核心思想是根据信息增益来选择最优的划分属性。以下是一个较为复杂的实例: 假设有一个医院的数据集,其中包含了患者的个人信息和诊断结果。我们的目标是根据个人信息来预测患者的诊断结果,即是否患有某种疾病。数据集的属性如下: 1. 年龄:离散值,分为青年、中年、老年三类 2. 性别:离散值,分为男、女两类 3. 血压:连续值,表示收缩压 4. 胆固醇:连续值,表示总胆固醇 5. 疾病:二元属性,表示是否患有某种疾病 在这个数据集中,我们希望通过构建决策树来预测患者是否患有该疾病。具体的步骤如下: 1. 计算每个属性的信息增益,选择信息增益最大的属性作为根节点。 2. 根据根节点的取值,将数据集分成若干个子集,分别对每个子集重复步骤1-2。 3. 终止条件:当一个分支的数据集只包含一个类别时,或者没有更多属性可供选择时,停止分裂。 在这个例子中,我们需要计算每个属性的信息增益,然后选择信息增益最大的属性作为根节点。对于连续属性,需要将其离散化,例如将血压分为高、中、低三类。然后根据根节点的取值将数据集分成若干个子集,对每个子集重复上述步骤。最终得到一个决策树,可以用来预测新的患者是否患有该疾病。 总之,C4.5算法的实现过程比较复杂,需要对数据集进行预处理、计算信息增益、选择最优属性等操作。但是它可以生成高质量的决策树,适用于多种领域的分类和回归问题。
相关问题

基于c4.5算法使用python实现算法实例

好的,以下是基于C4.5算法使用Python实现的示例代码: ```python import numpy as np import pandas as pd class C45: """ C4.5算法实现类 """ def __init__(self, epsilon=0.1): self.epsilon = epsilon # 阈值 def calc_shannon_ent(self, data): """ 计算数据集的熵 :param data: 数据集 :return: 熵 """ n = len(data) label_counts = {} for row in data: label = row[-1] if label not in label_counts: label_counts[label] = 0 label_counts[label] += 1 shannon_ent = 0.0 for key in label_counts: prob = float(label_counts[key]) / n shannon_ent -= prob * np.log2(prob) return shannon_ent def split_data(self, data, axis, value): """ 按照给定特征划分数据集 :param data: 待划分的数据集 :param axis: 划分数据集的特征的索引 :param value: 需要返回的特征的值 :return: 划分后的数据集 """ ret_data = [] for row in data: if row[axis] == value: reduced_row = row[:axis] reduced_row.extend(row[axis + 1:]) ret_data.append(reduced_row) return ret_data def choose_best_feature(self, data): """ 选择最好的数据集划分方式 :param data: 数据集 :return: 最好的划分方式的特征索引 """ num_features = len(data[0]) - 1 base_entropy = self.calc_shannon_ent(data) best_info_gain = 0.0 best_feature = -1 for i in range(num_features): feat_list = [row[i] for row in data] unique_vals = set(feat_list) new_entropy = 0.0 for value in unique_vals: sub_data = self.split_data(data, i, value) prob = len(sub_data) / float(len(data)) new_entropy += prob * self.calc_shannon_ent(sub_data) info_gain = base_entropy - new_entropy if info_gain > best_info_gain: best_info_gain = info_gain best_feature = i return best_feature def majority_cnt(self, label_list): """ 统计类别出现的次数,返回出现次数最多的类别 :param label_list: 类别列表 :return: 出现次数最多的类别 """ label_counts = {} for vote in label_list: if vote not in label_counts: label_counts[vote] = 0 label_counts[vote] += 1 sorted_label_counts = sorted(label_counts.items(), key=lambda x: x[1], reverse=True) return sorted_label_counts[0][0] def create_tree(self, data, labels): """ 创建决策树 :param data: 数据集 :param labels: 标签列表 :return: 决策树 """ class_list = [row[-1] for row in data] # 如果类别完全相同则停止划分 if class_list.count(class_list[0]) == len(class_list): return class_list[0] # 遍历完所有特征时返回出现次数最多的类别 if len(data[0]) == 1: return self.majority_cnt(class_list) # 选择最好的数据集划分方式 best_feat = self.choose_best_feature(data) best_feat_label = labels[best_feat] my_tree = {best_feat_label: {}} del (labels[best_feat]) feat_values = [row[best_feat] for row in data] unique_vals = set(feat_values) for value in unique_vals: sub_labels = labels[:] my_tree[best_feat_label][value] = self.create_tree(self.split_data(data, best_feat, value), sub_labels) return my_tree ``` 以上是一个基于C4.5算法的决策树实现示例,可以通过调用该类的`create_tree`方法来创建决策树。

C4.5算法java代码

C4.5算法是一种用于决策树生成的算法,它是ID3算法的改进版本,能够处理连续属性。在Java中实现C4.5算法涉及到一些数据结构和递归操作,以下是一个简单的示例,展示了如何创建决策树节点: ```java import java.util.*; class Attribute { String name; double infoGain; // 信息增益 // 构造函数和其他相关方法省略 } class Instance { // 属性值数组或其他数据结构 } class DecisionNode { String attribute; // 当前考虑的属性 double threshold; // 划分点 DecisionNode yes, no; // 左右子节点 List<Instance> instances; // 存放实例列表 public DecisionNode(Attribute a, double t) { this.attribute = a.name; this.threshold = t; yes = no = null; } } public class C45 { private List<Attribute> attributes; private List<Instance> dataset; // 构造函数、训练决策树等方法 public void createDecisionTree() { if (dataset.isEmpty()) return null; // 数据集为空,返回null Attribute bestAttr = selectBestAttribute(); // 获取最佳属性 DecisionNode root = new DecisionNode(bestAttr, calculateThreshold(bestAttr)); // 创建根节点 splitDataset(root); // 根据属性划分数据集 return root; } private Attribute selectBestAttribute() { // 选择信息增益最大的属性 // ... 实现信息增益计算和排序 } private void splitDataset(DecisionNode node) { // ... 实现根据属性划分数据集并递归构建子节点 } // 其他辅助方法如计算阈值、判断叶子节点等省略 } ``` 请注意,这只是一个简化的框架,实际应用中还需要考虑错误处理、剪枝优化等因素,并且上述代码没有包括完整的特征选择和信息增益计算算法。如果你想获取完整代码,可以参考开源库如Weka,它有现成的C4.5实现。
阅读全文

相关推荐

大家在看

recommend-type

卷积神经网络在雷达自动目标识别中的研究进展.pdf

自动目标识别(ATR)是雷达信息处理领域的重要研究方向。由于卷积神经网络(CNN)无需进行特征工 程,图像分类性能优越,因此在雷达自动目标识别领域研究中受到越来越多的关注。该文综合论述了CNN在雷达 图像处理中的应用进展。首先介绍了雷达自动目标识别相关知识,包括雷达图像的特性,并指出了传统的雷达自 动目标识别方法局限性。给出了CNN卷积神经网络原理、组成和在计算机视觉领域的发展历程。然后着重介绍了 CNN在雷达自动目标识别中的研究现状,其中详细介绍了合成孔径雷达(SAR)图像目标的检测与识别方法。接下 来对雷达自动目标识别面临的挑战进行了深入分析。最后对CNN新理论、新模型,以及雷达新成像技术和未来复 杂环境下的应用进行了展望。
recommend-type

伺服环修正参数-Power PMAC

伺服环修正参数 Ix59: 用户自写伺服/换向算法 使能 =0: 使用标准PID算法, 标准换向算法 =1: 使用自写伺服算法, 标准换向算法 =2: 使用标准PID算法,自写换向算法 =3: 使用自写伺服算法,自写换向算法 Ix60: 伺服环周期扩展 每 (Ix60+1) 个伺服中断闭环一次 用于慢速,低分辨率的轴 用于处理控制 “轴” NEW IDEAS IN MOTION
recommend-type

多變異圖的概念-minitab的PPT简易教程

多變異圖的概念 多变异图是一种以图形形式表示方差数据分析的方法,可以作为方差分析的一种“直观”的替代。这些图还可以用在数据分析的初级阶段以查看数据。该图显示每个因子在每个因子水平上的均值。
recommend-type

ETL Automation 使用手册 2.6

ETL Automation 使用手册 2.6
recommend-type

创建天线模型-OPNET使用入门

创建天线模型 OPNET的天线模型编辑器使用球面角phi 和theta 图形化地创建3 维天线模型。 本例程将创建一个新的天线模型,该天线在一个方向的增益是200dB,在其他任何方向的增益均为零(这是一个理想的选择性收信机)。 phi范围是180度 theta范围是逆时针360度

最新推荐

recommend-type

Python机器学习之决策树算法实例详解

C4.5和CART算法是对ID3的改进,C4.5使用信息增益比来避免偏好有更多类别的特征,而CART(Classification and Regression Trees)算法则可以处理连续和离散特征,并生成二叉树。 Python中实现决策树的库有多种,如...
recommend-type

与ID3相比,C4.5决策树算法的改进

C4.5 决策树算法的改进 C4.5 决策树算法是 ID3 算法的改进版本,相比 ID3 算法,C4.5 算法有以下四个主要改进: 一、使用信息增益率来选择属性:C4.5 算法使用信息增益率来选择属性,而不是像 ID3 算法那样使用...
recommend-type

机器学习分类算法实验报告.docx

首先,实验选择了至少四种算法,包括深度学习的CNN或其他模型、决策树(ID3/C4.5/CART)、kNN、多层感知机(MLP)、支持向量机(SVM)和朴素贝叶斯方法。数据集来源于UCI、SKlearn和Kaggle,确保样本规模超过1000,...
recommend-type

国民经济行业分类与国际标准行业分类(ISIC+Rev.4)的对照和匹配(供参考).docx

国民经济行业分类与国际标准行业分类(ISIC+Rev.4)的对照和匹配(供参考).docx
recommend-type

macOS 10.9至10.13版高通RTL88xx USB驱动下载

资源摘要信息:"USB_RTL88xx_macOS_10.9_10.13_driver.zip是一个为macOS系统版本10.9至10.13提供的高通USB设备驱动压缩包。这个驱动文件是针对特定的高通RTL88xx系列USB无线网卡和相关设备的,使其能够在苹果的macOS操作系统上正常工作。通过这个驱动,用户可以充分利用他们的RTL88xx系列设备,包括但不限于USB无线网卡、USB蓝牙设备等,从而实现在macOS系统上的无线网络连接、数据传输和其他相关功能。 高通RTL88xx系列是广泛应用于个人电脑、笔记本、平板和手机等设备的无线通信组件,支持IEEE 802.11 a/b/g/n/ac等多种无线网络标准,为用户提供了高速稳定的无线网络连接。然而,为了在不同的操作系统上发挥其性能,通常需要安装相应的驱动程序。特别是在macOS系统上,由于操作系统的特殊性,不同版本的系统对硬件的支持和驱动的兼容性都有不同的要求。 这个压缩包中的驱动文件是特别为macOS 10.9至10.13版本设计的。这意味着如果你正在使用的macOS版本在这个范围内,你可以下载并解压这个压缩包,然后按照说明安装驱动程序。安装过程通常涉及运行一个安装脚本或应用程序,或者可能需要手动复制特定文件到系统目录中。 请注意,在安装任何第三方驱动程序之前,应确保从可信赖的来源获取。安装非官方或未经认证的驱动程序可能会导致系统不稳定、安全风险,甚至可能违反操作系统的使用条款。此外,在安装前还应该查看是否有适用于你设备的更新驱动版本,并考虑备份系统或创建恢复点,以防安装过程中出现问题。 在标签"凄 凄 切 切 群"中,由于它们似乎是无意义的汉字组合,并没有提供有关该驱动程序的具体信息。如果这是一组随机的汉字,那可能是压缩包文件名的一部分,或者可能是文件在上传或处理过程中产生的错误。因此,这些标签本身并不提供与驱动程序相关的任何技术性知识点。 总结来说,USB_RTL88xx_macOS_10.9_10.13_driver.zip包含了用于特定高通RTL88xx系列USB设备的驱动,适用于macOS 10.9至10.13版本的操作系统。在安装驱动之前,应确保来源的可靠性,并做好必要的系统备份,以防止潜在的系统问题。"
recommend-type

PyCharm开发者必备:提升效率的Python环境管理秘籍

# 摘要 本文系统地介绍了PyCharm集成开发环境的搭建、配置及高级使用技巧,重点探讨了如何通过PyCharm进行高效的项目管理和团队协作。文章详细阐述了PyCharm项目结构的优化方法,包括虚拟环境的有效利用和项目依赖的管理。同时,本文也深入分析了版本控制的集成流程,如Git和GitHub的集成,分支管理和代码合并策略。为了提高代码质量,本文提供了配置和使用linters以及代码风格和格式化工具的指导。此外,本文还探讨了PyCharm的调试与性能分析工具,插件生态系统,以及定制化开发环境的技巧。在团队协作方面,本文讲述了如何在PyCharm中实现持续集成和部署(CI/CD)、代码审查,以及
recommend-type

matlab中VBA指令集

MATLAB是一种强大的数值计算和图形处理软件,主要用于科学计算、工程分析和技术应用。虽然它本身并不是基于Visual Basic (VB)的,但在MATLAB环境中可以利用一种称为“工具箱”(Toolbox)的功能,其中包括了名为“Visual Basic for Applications”(VBA)的接口,允许用户通过编写VB代码扩展MATLAB的功能。 MATLAB的VBA指令集实际上主要是用于操作MATLAB的工作空间(Workspace)、图形界面(GUIs)以及调用MATLAB函数。VBA代码可以在MATLAB环境下运行,执行的任务可能包括但不限于: 1. 创建和修改变量、矩阵
recommend-type

在Windows Forms和WPF中实现FontAwesome-4.7.0图形

资源摘要信息: "将FontAwesome470应用于Windows Forms和WPF" 知识点: 1. FontAwesome简介: FontAwesome是一个广泛使用的图标字体库,它提供了一套可定制的图标集合,这些图标可以用于Web、桌面和移动应用的界面设计。FontAwesome 4.7.0是该库的一个版本,它包含了大量常用的图标,用户可以通过简单的CSS类名引用这些图标,而无需下载单独的图标文件。 2. .NET开发中的图形处理: 在.NET开发中,图形处理是一个重要的方面,它涉及到创建、修改、显示和保存图像。Windows Forms和WPF(Windows Presentation Foundation)是两种常见的用于构建.NET桌面应用程序的用户界面框架。Windows Forms相对较为传统,而WPF提供了更为现代和丰富的用户界面设计能力。 3. 将FontAwesome集成到Windows Forms中: 要在Windows Forms应用程序中使用FontAwesome图标,首先需要将FontAwesome字体文件(通常是.ttf或.otf格式)添加到项目资源中。然后,可以通过设置控件的字体属性来使用FontAwesome图标,例如,将按钮的字体设置为FontAwesome,并通过设置其Text属性为相应的FontAwesome类名(如"fa fa-home")来显示图标。 4. 将FontAwesome集成到WPF中: 在WPF中集成FontAwesome稍微复杂一些,因为WPF对字体文件的支持有所不同。首先需要在项目中添加FontAwesome字体文件,然后通过XAML中的FontFamily属性引用它。WPF提供了一个名为"DrawingImage"的类,可以将图标转换为WPF可识别的ImageSource对象。具体操作是使用"FontIcon"控件,并将FontAwesome类名作为Text属性值来显示图标。 5. FontAwesome字体文件的安装和引用: 安装FontAwesome字体文件到项目中,通常需要先下载FontAwesome字体包,解压缩后会得到包含字体文件的FontAwesome-master文件夹。将这些字体文件添加到Windows Forms或WPF项目资源中,一般需要将字体文件复制到项目的相应目录,例如,对于Windows Forms,可能需要将字体文件放置在与主执行文件相同的目录下,或者将其添加为项目的嵌入资源。 6. 如何使用FontAwesome图标: 在使用FontAwesome图标时,需要注意图标名称的正确性。FontAwesome提供了一个图标检索工具,帮助开发者查找和确认每个图标的确切名称。每个图标都有一个对应的CSS类名,这个类名就是用来在应用程序中引用图标的。 7. 面向不同平台的应用开发: 由于FontAwesome最初是为Web开发设计的,将它集成到桌面应用中需要做一些额外的工作。在不同平台(如Web、Windows、Mac等)之间保持一致的用户体验,对于开发团队来说是一个重要考虑因素。 8. 版权和使用许可: 在使用FontAwesome字体图标时,需要遵守其提供的许可证协议。FontAwesome有多个许可证版本,包括免费的公共许可证和个人许可证。开发者在将FontAwesome集成到项目中时,应确保符合相关的许可要求。 9. 资源文件管理: 在管理包含FontAwesome字体文件的项目时,应当注意字体文件的维护和更新,确保在未来的项目版本中能够继续使用这些图标资源。 10. 其他图标字体库: FontAwesome并不是唯一一个图标字体库,还有其他类似的选择,例如Material Design Icons、Ionicons等。开发人员可以根据项目需求和偏好选择合适的图标库,并学习如何将它们集成到.NET桌面应用中。 以上知识点总结了如何将FontAwesome 4.7.0这一图标字体库应用于.NET开发中的Windows Forms和WPF应用程序,并涉及了相关的图形处理、资源管理和版权知识。通过这些步骤和细节,开发者可以更有效地增强其应用程序的视觉效果和用户体验。
recommend-type

【Postman进阶秘籍】:解锁高级API测试与管理的10大技巧

# 摘要 本文系统地介绍了Postman工具的基础使用方法和高级功能,旨在提高API测试的效率与质量。第一章概述了Postman的基本操作,为读者打下使用基础。第二章深入探讨了Postman的环境变量设置、集合管理以及自动化测试流程,特别强调了测试脚本的编写和持续集成的重要性。第三章介绍了数据驱动测试、高级断言技巧以及性能测试,这些都是提高测试覆盖率和测试准确性的关键技巧。第四章侧重于API的管理,包括版本控制、文档生成和分享,以及监控和报警系统的设计,这些是维护和监控API的关键实践。最后,第五章讨论了Postman如何与DevOps集成以及插件的使用和开发,展示了Postman在更广阔的应
recommend-type

ubuntu22.04怎么恢复出厂设置

### 如何在Ubuntu 22.04上执行恢复出厂设置 #### 清除个人数据并重置系统配置 要使 Ubuntu 22.04 恢复到初始状态,可以考虑清除用户的个人文件以及应用程序的数据。这可以通过删除 `/home` 目录下的所有用户目录来实现,但需要注意的是此操作不可逆,在实际操作前建议先做好重要资料的备份工作[^1]。 对于全局范围内的软件包管理,如果希望移除非官方源安装的应用程序,则可通过 `apt-get autoremove` 命令卸载不再需要依赖项,并手动记录下自定义安装过的第三方应用列表以便后续重新部署环境时作为参考[^3]。 #### 使用Live CD/USB进行修