写一个电压电流双环控制的DSP程序

时间: 2023-10-01 19:09:10 浏览: 65
以下是一个电压电流双环控制的DSP程序的示例,供您参考: ```c #include <stdio.h> #include <stdlib.h> #include <math.h> #include "DSP2833x_Device.h" #include "DSP2833x_Examples.h" // 定义采样周期 #define Ts 0.0001 // 定义电压电流采样AD最大值 #define Vmax 4096 #define Imax 4096 // 定义PID参数 #define Kp_v 0.1 #define Ki_v 0.01 #define Kp_i 0.2 #define Ki_i 0.02 // 定义电压电流变量 int16 V, I; // 定义PID控制变量 float error_v, error_i; float integral_v, integral_i; float output_v, output_i; float setpoint_v, setpoint_i; // 定义DAC输出变量 int16 DAC_v, DAC_i; // 定义函数原型 void Init_ADC(); void Init_DAC(); void Init_PWM(); void Init_PID(); void ADC_ISR(); void PWM_ISR(); void main(void) { // 初始化系统 InitSysCtrl(); // 初始化ADC、DAC、PWM、PID等模块 Init_ADC(); Init_DAC(); Init_PWM(); Init_PID(); // 启用全局中断 EINT; ERTM; // 进入主循环 while(1) { // 获取电压电流采样值 V = AdcRegs.ADCRESULT0; I = AdcRegs.ADCRESULT1; // 计算电压电流PID控制量 error_v = setpoint_v - V; integral_v += Ki_v * error_v * Ts; output_v = Kp_v * error_v + integral_v; if(output_v > 1.0) output_v = 1.0; if(output_v < 0.0) output_v = 0.0; error_i = setpoint_i - I; integral_i += Ki_i * error_i * Ts; output_i = Kp_i * error_i + integral_i; if(output_i > 1.0) output_i = 1.0; if(output_i < 0.0) output_i = 0.0; // 输出DAC控制信号 DAC_v = output_v * Vmax; DAC_i = output_i * Imax; DacaRegs.DACVALS.all = DAC_v; DacbRegs.DACVALS.all = DAC_i; } } // 初始化ADC模块 void Init_ADC() { // 初始化ADC时钟 AdcRegs.ADCTRL2.bit.PRESCALE = 6; AdcRegs.ADCTRL3.bit.ADCCLKPS = 5; // 初始化ADC采样周期 AdcRegs.ADCCTL1.bit.ADCPWDN = 1; AdcRegs.ADCCTL1.bit.ADCBGPWD = 1; AdcRegs.ADCCTL1.bit.ADCREFPWD = 1; AdcRegs.ADCCTL1.bit.ADCENABLE = 1; AdcRegs.ADCCTL1.bit.ADCREFSEL = 0; AdcRegs.ADCCTL1.bit.INTPULSEPOS = 1; AdcRegs.ADCSOC0CTL.bit.TRIGSEL = 5; AdcRegs.ADCSOC0CTL.bit.CHSEL = 0; AdcRegs.ADCSOC0CTL.bit.ACQPS = 15; AdcRegs.ADCSOC1CTL.bit.TRIGSEL = 5; AdcRegs.ADCSOC1CTL.bit.CHSEL = 1; AdcRegs.ADCSOC1CTL.bit.ACQPS = 15; // 初始化ADC中断 PieCtrlRegs.PIEIER1.bit.INTx6 = 1; IER |= M_INT1; } // 初始化DAC模块 void Init_DAC() { // 初始化DAC时钟 DacaRegs.DACCTL.bit.DACREFSEL = 0; DacaRegs.DACCTL.bit.LOADMODE = 0; DacaRegs.DACOUTEN.bit.DACOUTEN = 1; DacbRegs.DACCTL.bit.DACREFSEL = 0; DacbRegs.DACCTL.bit.LOADMODE = 0; DacbRegs.DACOUTEN.bit.DACOUTEN = 1; } // 初始化PWM模块 void Init_PWM() { // 初始化PWM时钟 CpuSysRegs.PCLKCR2.bit.EPWM1ENCLK = 1; EPwm1Regs.TBCTL.bit.CTRMODE = 2; EPwm1Regs.TBPRD = 1500; EPwm1Regs.TBCTL.bit.PHSEN = 1; EPwm1Regs.TBPHS.half.TBPHS = 0; EPwm1Regs.TBCTL.bit.SYNCOSEL = 3; EPwm1Regs.CMPA.half.CMPA = 750; EPwm1Regs.AQCTLA.bit.CAU = 1; EPwm1Regs.AQCTLA.bit.CAD = 2; EPwm1Regs.CMPB.half.CMPB = 750; EPwm1Regs.AQCTLB.bit.CBU = 1; EPwm1Regs.AQCTLB.bit.CBD = 2; } // 初始化PID模块 void Init_PID() { // 初始化PID变量 setpoint_v = 500; setpoint_i = 200; error_v = 0; error_i = 0; integral_v = 0; integral_i = 0; output_v = 0; output_i = 0; } // ADC采样中断服务程序 interrupt void ADC_ISR() { AdcRegs.ADCINTFLGCLR.bit.ADCINT1 = 1; } // PWM中断服务程序 interrupt void PWM_ISR() { PieCtrlRegs.PIEACK.all = PIEACK_GROUP3; } ``` 以上是一个简单的电压电流双环控制的DSP程序示例,具体实现方式可能因硬件平台和控制算法不同而有所差异。程序的基本思路是通过ADC采集电压电流值,经过PID控制计算后输出控制信号到DAC模块,通过PWM模块控制电压电流输出到负载。需要注意的是,程序中的PID参数需要根据实际应用场景进行调整,以达到最佳的控制效果。

相关推荐

最新推荐

recommend-type

基于DSP的逆变器控制系统的设计.pdf

基于DSP的逆变器控制系统的设计,基于双环控制的设计,建立了双环控制下的逆变器的数学模型,并分析其稳定条件
recommend-type

电源技术中的开关型DC/DC变换器电压、电流控制的基本原理

而电流控制型DC/DC开关变换器是在电压控制型的基础上,增加了电流反馈环,形成了双环控制系统,这使得高频开关稳压电源的电压调整率、负载调整率和瞬态响应特性都有所提高,是目前较为理想的工作方式。 (1)电压...
recommend-type

电源技术中的移相全桥DC/DC变换器双闭环控制系统设计

摘要:提出移相全桥DC/DC变换器闭环系统设计方案,基于PWM控制器件UCC3895设计一个双闭环控制系统,该系统采用电压外环和电流内环的控制方式,在电压环中引入双零点、双极点的PI补偿,电流环中引入斜坡补偿,结合实...
recommend-type

单相光伏并网逆变器的控制方法综述与PI控制参数整定的探讨.docx

针对经典的PI参数的计算方法大合集,电流内环PI参数的正定,以及根据根轨迹、幅值裕度、相角裕度的规则确定补偿参数。 外环根据内环的整定来保证电压外环输出的截止频率和系统的频带宽度满足要求。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

SPDK_NVMF_DISCOVERY_NQN是什么 有什么作用

SPDK_NVMF_DISCOVERY_NQN 是 SPDK (Storage Performance Development Kit) 中用于查询 NVMf (Non-Volatile Memory express over Fabrics) 存储设备名称的协议。NVMf 是一种基于网络的存储协议,可用于连接远程非易失性内存存储器。 SPDK_NVMF_DISCOVERY_NQN 的作用是让存储应用程序能够通过 SPDK 查询 NVMf 存储设备的名称,以便能够访问这些存储设备。通过查询 NVMf 存储设备名称,存储应用程序可以获取必要的信息,例如存储设备的IP地址、端口号、名称等,以便能
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依