用python写安全帽检测的程序
时间: 2023-08-15 22:07:12 浏览: 96
商用Python工地安全帽识别安全帽检测预警yolo可以检测图片,视频流,有界面python商用源码
5星 · 资源好评率100%
要用Python编写安全帽检测程序,可以使用深度学习框架中的目标检测模型,例如YOLOv3、Faster R-CNN或SSD等。以下是一个使用TensorFlow Object Detection API实现安全帽检测的示例代码:
```python
import cv2
import numpy as np
import tensorflow as tf
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as vis_util
# 载入模型
PATH_TO_CKPT = 'path/to/frozen_inference_graph.pb'
PATH_TO_LABELS = 'path/to/label_map.pbtxt'
NUM_CLASSES = 1
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
# 载入标签映射
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
# 初始化摄像头
cap = cv2.VideoCapture(0)
with detection_graph.as_default():
with tf.Session(graph=detection_graph) as sess:
while True:
# 获取图像帧
ret, image_np = cap.read()
image_np_expanded = np.expand_dims(image_np, axis=0)
# 获取检测结果
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
scores = detection_graph.get_tensor_by_name('detection_scores:0')
classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
(boxes, scores, classes, num_detections) = sess.run(
[boxes, scores, classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
# 可视化检测结果
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=2)
# 显示图像
cv2.imshow('object detection', cv2.resize(image_np, (800, 600)))
if cv2.waitKey(25) & 0xFF == ord('q'):
cap.release()
cv2.destroyAllWindows()
break
```
在代码中,首先载入已经训练好的目标检测模型和标签映射。然后使用OpenCV库初始化摄像头,并在每个图像帧上运行检测模型,将检测结果可视化后显示在屏幕上。
阅读全文